No Arabic abstract
We study the excitation of electron currents in a transparent cell of sub-millimeter size filled by an atomic gas and illuminated by an intense two-color femtosecond laser pulse. The pulse consists of a strong fundamental component and its second harmonic of low intensity, both circularly polarized. We show that for sufficiently small $20mu$m cells the plasma oscillation excited by asymmetric ionization is almost spatially homogeneous within the interaction volume. This coherent dipole plasma oscillation results in a remarkably efficient conversion of the electron energy into that of radiation emitted in the terahertz frequency domain. Simultaneously, strong quasi-static electric fields of maximal strength $E_msimeq 10$MV/cm are shown to exist inside the cell during several hundred femtoseconds after the ionizing two-color laser pulse has gone.
A way to considerably enhance terahertz radiation, emitted in the interaction of intense mid-infrared laser pulses with atomic gases, in both the total energy and the electric-field amplitude is suggested. The scheme is based on the application of a two-color field consisting of a strong circularly polarized mid-infrared pulse with wavelengths of $1.6div 4,mu{rm m}$ and its linearly or circularly polarized second harmonic of lower intensity. By combining the strong-field approximation for the ionization of a single atom with particle-in-cell simulations of the collective dynamics of the generated plasma it is shown that the application of such two-color circularly polarized laser pulses may lead to an order-of-magnitude increase in the energy emitted in the terahertz frequency domain as well as in a considerable enhancement in the maximal electric field of the terahertz pulse. Our results support recently reported experimental and numerical findings.
We study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and an (almost) linearly-polarized THz field when using circularly-polarized laser harmonics. For such pump pulses, the THz yield is independent on the relative phase between the two colors. When the pump pulses have same helicity, the increase in the THz yield is associated to longer ionization sequences and higher electron transverse momenta acquired in the driving field. Reversely, for two color pulses with opposite helicity, the dramatic loss of THz power comes from destructive interferences driven by the highly symmetric response of the photocurrents lined up on the third harmonic of the fundamental pulse. While our experiments confirm an increased THz yield for circularly polarized pumps of same helicity, surprisingly, the emitted THz radiation is not linearly-polarized. This effect is explained by means of comprehensive 3D numerical simulations highlighting the role of the spatial alignment and non-collinear propagation of the two colors.
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquires a vortex structure as well. A generic feature of such THz vortex is that the intensity is modulated along the azimuthal angle, which can be attributed to the spatially varying relative phase difference between the two pump harmonics. Fully space and time resolved numerical simulations reveal that transverse instabilities of the pump further affect the emitted THz field along nonlinear propagation, which produces additional singularities resulting in a rich vortex structure. The predicted intensity modulation is experimentally demonstrated with a thermal camera, in excellent agreement with simulation results. The presence of phase singularities in the experiment is revealed by astigmatic transformation of the beam using a cylindrical mirror.
The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse.
Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to~60~nJ energy and 90 to~400~attosecond duration in the 30 to 120~nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.