Do you want to publish a course? Click here

Characteristics of a Gradual Filament Eruption and Subsequent CME Propagation in Relation to a Strong Geomagnetic Storm

84   0   0.0 ( 0 )
 Added by Chong Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

An unexpected strong geomagnetic storm occurred on 2018 August 26, which was caused by a slow coronal mass ejection (CME) from a gradual eruption of a large quiet-region filament. We investigate the eruption and propagation characteristics of this CME in relation to the strong geomagnetic storm with remote sensing and in situ observations. Coronal magnetic fields around the filament are extrapolated and compared with EUV observations. We determine the propagation direction and tilt angle of the CME flux rope near the Sun using a graduated cylindrical shell (GCS) model and the Sun-to-Earth kinematics of the CME with wide-angle imaging observations from STEREO A. We reconstruct the flux-rope structure using a Grad-Shafranov technique based on the in situ measurements at the Earth and compare it with those from solar observations and the GCS results. Our conclusions are as follows: (1) the eruption of the filament was unusually slow and occurred in the regions with relatively low critical heights of the coronal field decay index; (2) the axis of the CME flux rope rotated in the corona as well as in interplanetary space, which tended to be aligned with the local heliospheric current sheet; (3) the CME was bracketed between slow and fast solar winds, which enhanced the magnetic field inside the CME at 1 AU; (4) the geomagnetic storm was caused by the enhanced magnetic field and a southward orientation of the flux rope at 1 AU from the rotation of the flux rope.



rate research

Read More

The sun occasionally undergoes the so-called grand minima, in which its magnetic activity, measured by the number of sunspots, is suppressed for decades. The most prominent grand minima, since the beginning of telescopic observations of sunspots, is the Maunder minimum (1645-1715), when the sunspots became rather scarce. The mechanism underlying the grand minima remains poorly understood as there is little observational information of the solar magnetic field at that time. In this study, we examine the records of one candidate aurora display in China and Japan during the Maunder minimum. The presence of auroras in such mid magnetic latitudes indicates the occurrence of great geomagnetic storms that are usually produced by strong solar flares. However, the records of contemporary sunspot observations from Europe suggest that, at least for the likely aurora event, there was no large sunspot that could produce a strong flare. Through simple theoretical arguments, we show that this geomagnetic storm could have been generated by an eruption giant quiescent filament, or a series of such events.
Coronal mass ejections (CMEs) are the primary sources of intense disturbances at Earth, where their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic field, which can be significantly altered during interactions with other CMEs in interplanetary space. We analyse three successive CMEs that erupted from the Sun during September 4-6, 2017, investigating the role of CME-CME interactions as source of the associated intense geomagnetic storm (Dst_min=-142 nT on September 7). To quantify the impact of interactions on the (geo-)effectiveness of individual CMEs, we perform global heliospheric simulations with the EUHFORIA model, using observation-based initial parameters with the additional purpose of validating the predictive capabilities of the model for complex CME events. The simulations show that around 0.45 AU, the shock driven by the September 6 CME started compressing a preceding magnetic ejecta formed by the merging of two CMEs launched on September 4, significantly amplifying its Bz until a maximum factor of 2.8 around 0.9 AU. The following gradual conversion of magnetic energy into kinetic and thermal components reduced the Bz amplification until its almost complete disappearance around 1.8 AU. We conclude that a key factor at the origin of the intense storm triggered by the September 4-6, 2017 CMEs was their arrival at Earth during the phase of maximum Bz amplification. Our analysis highlights how the amplification of the magnetic field of individual CMEs in space-time due to interaction processes can be characterised by a growth, a maximum, and a decay phase, suggesting that the time interval between the CME eruptions and their relative speeds are critical factors in determining the resulting impact of complex CMEs at various heliocentric distances (helio-effectiveness).
109 - Ying D. Liu , Chong Chen , 2020
As an important source for large geomagnetic storms, an ICME-in-sheath is a completely shocked interplanetary coronal mass ejection (ICME) stuck in the sheath between a shock and host ejecta. Typical characteristics are identified from coordinated multi-sets of observations: (1) it is usually short in duration and lasts a few hours at 1 AU; (2) its solar wind parameters, in particular the magnetic field, seem to keep enhanced for a large range of distances; and (3) common ICME signatures are often lost. The host ejecta could be a single ICME or a complex ejecta, being fast enough to drive a shock. These results clarify previous misinterpretations of this phenomenon as a normal part of a sheath region. The ICME-in-sheath phenomenon, together with a preconditioning effect, produced an extreme set of the magnetic field, speed and density near 1 AU in the 2012 July 23 case, all around their upper limits at the same time. This is probably the most extreme solar wind driving at 1 AU and enables us to estimate the plausible upper limit for geomagnetic storm activity. With an appropriate modification in the southward field, we suggest that a geomagnetic storm with a minimum $D_{rm st}$ of about $-2000$ nT could occur in principle. The magnetopause would be compressed to about 3.3 Earth radii from the Earths center, well inside the geosynchronous orbit.
It has been established that Coronal Mass Ejections (CMEs) may have significant impact on terrestrial magnetic field and lead to space weather events. In the present study, we selected several CMEs which are associated with filament eruptions on the Sun. We attempt to identify the presence of filament material within ICME at 1AU. We discuss how different ICMEs associated with filaments lead to moderate or major geomagnetic activity on their arrival at the Earth. Our study also highlights the difficulties in identifying the filament material at 1AU within isolated and in interacting CMEs.
On 2010 August 14, a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that drew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated to this event. However, contrary to what is expected, the fast CME ($mathrm{v}>900~mathrm{km}~mathrm{s}^{-1}$) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk to underestimate the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا