Flavor Moonshine


Abstract in English

The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons, quarks, Higgs and gauge particles -- more precisely, their mass ratios) are expressed as coefficients in the Fourier expansion of some modular forms just as, in mathematics, dimensions of representations of a certain group are expressed as coefficients in the Fourier expansion of some modular forms. The mysterious hierarchical structure of the quark and lepton masses is thus attributed to that of the Fourier coefficient matrices of certain modular forms. Our intention here is not to prove this hypothesis starting from some physical assumptions but rather to demonstrate that this hypothesis is experimentally verified and, assuming that the string theory correctly describes the natural law, to calculate the geometry (K{a}hler potential and the metric) of the moduli space of the Calabi-Yau manifold, thus providing a way to calculate the metric of Calabi-Yau manifold itself directly from the experimental data.

Download