We study generating functions of moduli-space integrals at genus one that are expected to form a basis for massless $n$-point one-loop amplitudes of open superstrings and open bosonic strings. These integrals are shown to satisfy the same type of linear and homogeneous first-order differential equation w.r.t. the modular parameter $tau$ which is known from the A-elliptic Knizhnik--Zamolodchikov--Bernard associator. The expressions for their $tau$-derivatives take a universal form for the integration cycles in planar and non-planar one-loop open-string amplitudes. These differential equations manifest the uniformly transcendental appearance of iterated integrals over holomorphic Eisenstein series in the low-energy expansion w.r.t. the inverse string tension $alpha$. In fact, we are led to matrix representations of certain derivations dual to Eisenstein series. Like this, also the $alpha$-expansion of non-planar integrals is manifestly expressible in terms of iterated Eisenstein integrals without referring to twisted elliptic multiple zeta values. The degeneration of the moduli-space integrals at $tau rightarrow iinfty$ is expressed in terms of their genus-zero analogues -- $(n{+}2)$-point Parke--Taylor integrals over disk boundaries. Our results yield a compact formula for $alpha$-expansions of $n$-point integrals over boundaries of cylinder- or Moebius-strip worldsheets, where any desired order is accessible from elementary operations.