Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries


Abstract in English

Given a graph $G$, a source node $s$ and a target node $t$, the personalized PageRank (PPR) of $t$ with respect to $s$ is the probability that a random walk starting from $s$ terminates at $t$. An important variant of the PPR query is single-source PPR (SSPPR), which enumerates all nodes in $G$, and returns the top-$k$ nodes with the highest PPR values with respect to a given source $s$. PPR in general and SSPPR in particular have important applications in web search and social networks, e.g., in Twitters Who-To-Follow recommendation service. However, PPR computation is known to be expensive on large graphs, and resistant to indexing. Consequently, previous solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power of modern data centers, which is costly. Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR processing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution that combines two existing methods Forward Push (which is fast but does not guarantee quality) and Monte Carlo Random Walk (accurate but slow) in a simple and yet non-trivial way, leading to both high accuracy and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top-$k$ selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are orders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset, FORA answers a top-500 approximate SSPPR query within 1 second, using a single commodity server.

Download