Cluster Perturbation Theory (CPT) is a computationally economic method commonly used to estimate the momentum and energy resolved single-particle Greens function. It has been used extensively in direct comparisons with experiments that effectively measure the single-particle Greens function, e.g., angle-resolved photoemission spectroscopy. However, many experimental observables are given by two-particle correlation functions. CPT can be extended to compute two-particle correlation functions by approximately solving the Bethe-Salpeter equation. We implement this method and focus on the transverse spin-susceptibility, measurable via inelastic neutron scattering or with optical probes of atomic gases in optical lattices. We benchmark the method with the one-dimensional Fermi-Hubbard model at half filling by comparing with known results.