Energy on spheres and discreteness of minimizing measures


Abstract in English

In the present paper we study the minimization of energy integrals on the sphere with a focus on an interesting clustering phenomenon: for certain types of potentials, optimal measures are discrete or are supported on small sets. In particular, we prove that the support of any minimizer of the $p$-frame energy has empty interior whenever $p$ is not an even integer. A similar effect is also demonstrated for energies with analytic potentials which are not positive definite. In addition, we establish the existence of discrete minimizers for a large class of energies, which includes energies with polynomial potentials.

Download