No Arabic abstract
Tree sets are abstract structures that can be used to model various tree-shaped objects in combinatorics. Finite tree sets can be represented by finite graph-theoretical trees. We extend this representation theory to infinite tree sets. First we characterise those tree sets that can be represented by tree sets arising from infinite trees; these are precisely those tree sets without a chain of order type ${omega+1}$. Then we introduce and study a topological generalisation of infinite trees which can have limit edges, and show that every infinite tree set can be represented by the tree set admitted by a suitable such tree-like space.
Given a set $F$ of words, one associates to each word $w$ in $F$ an undirected graph, called its extension graph, and which describes the possible extensions of $w$ on the left and on the right. We investigate the family of sets of words defined by the property of the extension graph of each word in the set to be acyclic or connected or a tree. We prove that in a uniformly recurrent tree set, the sets of first return words are bases of the free group on the alphabet. Concerning acyclic sets, we prove as a main result that a set $F$ is acyclic if and only if any bifix code included in $F$ is a basis of the subgroup that it generates.
Phylogenetic trees canonically arise as embeddings of phylogenetic networks. We recently showed that the problem of deciding if two phylogenetic networks embed the same sets of phylogenetic trees is computationally hard, blue{in particular, we showed it to be $Pi^P_2$-complete}. In this paper, we establish a polynomial-time algorithm for this decision problem if the initial two networks consists of a normal network and a tree-child network. The running time of the algorithm is quadratic in the size of the leaf sets.
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of $k$-connected sets of arbitrary but fixed infinite cardinality via the existence of certain minors and topological minors. We also prove a duality theorem for the existence of such $k$-connected sets: if a graph contains no such $k$-connected set, then it has a tree-decomposition which, whenever it exists, precludes the existence of such a $k$-connected set.
A finite or infinite matrix $A$ is image partition regular provided that whenever $mathbb{N}$ is finitely colored, there must be some $overset{rightarrow}{x}$ with entries from $mathbb{N}$ such that all entries of $A overset{rightarrow}{x}$ are in the same color class. Comparing to the finite case, infinite image partition regular matrices seem more harder to analyze. The concept of centrally image partition regular matrices were introduced to extend the results of finite image partition regular matrices to infinite one. In this paper, we shall introduce the notion of C-image partition regular matrices, an interesting subclass of centrally image partition regular matrices. Also we shall see that many of known centrally image partition regular matrices are C-image partition regular.
Whitneys extension problem asks the following: Given a compact set $Esubsetmathbb{R}^n$ and a function $f:Eto mathbb{R}$, how can we tell whether there exists $Fin C^m(mathbb{R}^n)$ such that $F|_E=f$? A 2006 theorem of Charles Fefferman answers this question in its full generality. In this paper, we establish a version of this theorem adapted for variants of the Whitney extension problem, including nonnegative extensions and the smooth selection problems. Among other things, we generalize the results of Fefferman-Israel-Luli (2016) to the setting of infinite sets.