Do you want to publish a course? Click here

Pb-doped p-type Bi$_2$Se$_3$ thin films via interfacial engineering

317   0   0.0 ( 0 )
 Added by Jisoo Moon
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to high density of native defects, the prototypical topological insulator (TI), Bi$_2$Se$_3$, is naturally n-type. Although Bi$_2$Se$_3$ can be converted into p-type by substituting 2+ ions for Bi, only light elements such as Ca have been so far effective as the compensation dopant. Considering that strong spin-orbit coupling (SOC) is essential for the topological surface states, a light element is undesirable as a dopant, because it weakens the strength of SOC. In this sense, Pb, which is the heaviest 2+ ion, located right next to Bi in the periodic table, is the most ideal p-type dopant for Bi$_2$Se$_3$. However, Pb-doping has so far failed to achieve p-type Bi$_2$Se$_3$ not only in thin films but also in bulk crystals. Here, by utilizing an interface engineering scheme, we have achieved the first Pb-doped p-type Bi$_2$Se$_3$ thin films. Furthermore, at heavy Pb-doping, the mobility turns out to be substantially higher than that of Ca-doped samples, indicating that Pb is a less disruptive dopant than Ca. With this SOC-preserving counter-doping scheme, it is now possible to fabricate Bi$_2$Se$_3$ samples with tunable Fermi levels without compromising their topological properties.



rate research

Read More

The anomalous Hall effect (AHE) is a non-linear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quantum anomalous Hall effect (QAHE), in Cr- or V-doped topological insulator (TI) (Sb,Bi)$_2$Te$_3$ thin films, the AHE in magnetic TIs has been attracting significant interest. However, one of the puzzles in this system has been that while Cr- or V-doped (Sb,Bi)$_2$Te$_3$ and V-doped Bi$_2$Se$_3$ exhibit AHE, Cr-doped Bi$_2$Se$_3$ has failed to exhibit even ferromagnetic AHE, the expected predecessor to the QAHE, though it is the first material predicted to exhibit the QAHE. Here, we have successfully implemented ferromagnetic AHE in Cr-doped Bi$_2$Se$_3$ thin films by utilizing a surface state engineering scheme. Surprisingly, the observed ferromagnetic AHE in the Cr-doped Bi$_2$Se$_3$ thin films exhibited only positive slope regardless of the carrier type. We show that this sign problem can be explained by the intrinsic Berry curvature of the system as calculated from a tight-binding model combined with a first-principles method.
Structural, magnetic and magnetotransport properties of (Bi$_{1-x}$Eu$_x$)$_2$Se$_3$ thin films have been studied experimentally as a function of Eu content. The films were synthesized by MBE. It is demonstrated that Eu distribution is not uniform, it enter quint-layers forming inside them plain (pancake-like) areas containing Eu atoms, which sizes and concentration increase with the growth of Eu content. Positive magnetoresistance related to the weak antilocalization was observed up to 15K. The antilocalization was not followed by weak localization as theory predicts for nontrivial topological states. Surprisingly, the features of antilocalization were seen even at Eu content $x$ $=$ 0.21. With the increase of Eu content the transition to ferromagnetic state occurs at $x$ about 0.1 and with the Curie temperature $approx$ 8K, that rises up to 64K for $x$ $=$ 0.21. At temperatures above 1-2 K, the dephasing length is proportional to $T^{-1/2}$ indicating the dominant contribution of inelastic $e-e$ scattering into electron phase breaking. However, at low temperatures the dephasing length saturates, that could be due to the scattering on magnetic ions.
Electronic correlation is believed to play an important role in exotic phenomena such as insulator-metal transition, colossal magneto resistance and high temperature superconductivity in correlated electron systems. Recently, it has been shown that electronic correlation may also be responsible for the formation of unconventional plasmons. Herewith, using a combination of angle-dependent spectroscopic ellipsometry, angle resolved photoemission spectroscopy and Hall measurements all as a function of temperature supported by first-principles calculations, the existence of low-loss high-energy correlated plasmons accompanied by spectral weight transfer, a fingerprint of electronic correlation, in topological insulator (Bi$_{0.8}$Sb$_{0.2}$)$_2$Se$_3$ is revealed. Upon cooling, the density of free charge carriers in the surface states decreases whereas those in the bulk states increase, and that the newly-discovered correlated plasmons are key to explaining this phenomenon. Our result shows the importance of electronic correlation in determining new correlated plasmons and opens a new path in engineering plasmonic-based topologically-insulating devices.
We report the preparation of high-quality single crystal of Bi$_2$Se$_3$, a well-known topological insulator and its Ti-doped compositions using Bridgeman technique. Prepared single crystals were characterized by x-ray diffraction (XRD) to check the crystalline structure and energy dispersive analysis of x-rays for composition analysis. The XRD data of Ti-doped compounds show a small shift with respect to normal Bi$_2$Se$_3$ indicating changes in the lattice parameters while the structure type remained unchanged; this also establishes that Ti goes to the intended substitution sites. All the above analysis establishes successful preparation of these crystals with high quality using Bridgman technique. We carried out x-ray photo-emission spectroscopy to study the composition via investigating the core level spectra. Bi$_2$Se$_3$ spectra exhibit sharp and distinct features for the core levels and absence of impurity features. The core level spectra of the Ti-doped sample exhibit distinct signal due to Ti core levels. The analysis of the spectral features reveal signature of plasmon excitation and final state satellites; a signature of finite electron correlation effect in the electronic structure.
We report molecular beam epitaxy growth of Sr-doped Bi$_2$Se$_3$ films on (111) BaF$_2$ substrate, aimed to realize unusual superconducting properties inherent to Sr$_x$Bi$_2$Se$_3$ single crystals. Despite wide range of the compositions, we do not achieve superconductivity. To explore the reason for that we study structural, morphological and electronic properties of the films and compare them to the corresponding properties of the single crystals. The dependence of the c-lattice constant in the films on Sr content appears to be more than an order of magnitude stronger than in the crystals. Correspondingly, all other properties also differ substantially, indicating that Sr atoms get different positions in lattices. We argue that these structural discrepancies come from essential differences in growth conditions. Our research calls for more detailed structural studies and novel growth approaches for design of superconducting Sr$_x$Bi$_2$Se$_3$ thin films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا