Waist theorems for Tonelli systems in higher dimensions


Abstract in English

We study the periodic orbits problem on energy levels of Tonelli Lagrangian systems over configuration spaces of arbitrary dimension. We show that, when the fundamental group is finite and the Lagrangian has no stationary orbit at the Ma~ne critical energy level, there is a waist on every energy level just above the Ma~ne critical value. With a suitable perturbation with a potential, we show that there are infinitely many periodic orbits on every energy level just above the Ma~ne critical value, and on almost every energy level just below. Finally, we prove the Tonelli analogue of a closed geodesics result due to Ballmann-Thorbergsson-Ziller.

Download