Do you want to publish a course? Click here

Boundary Defense against Cyber Threat for Power System Operation

60   0   0.0 ( 0 )
 Added by Ming Jin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The operation of power grids is becoming increasingly data-centric. While the abundance of data could improve the efficiency of the system, it poses major reliability challenges. In particular, state estimation aims to learn the behavior of the network from data but an undetected attack on this problem could lead to a large-scale blackout. Nevertheless, understanding vulnerability of state estimation against cyber attacks has been hindered by the lack of tools studying the topological and data-analytic aspects of the network. Algorithmic robustness is of critical need to extract reliable information from abundant but untrusted grid data. We propose a robust state estimation framework that leverages network sparsity and data abundance. For a large-scale power grid, we quantify, analyze, and visualize the regions of the network prone to cyber attacks. We also propose an optimization-based graphical boundary defense mechanism to identify the border of the geographical area whose data has been manipulated. The proposed method does not allow a local attack to have a global effect on the data analysis of the entire network, which enhances the situational awareness of the grid especially in the face of adversity. The developed mathematical framework reveals key geometric and algebraic factors that can affect algorithmic robustness and is used to study the vulnerability of the U.S. power grid in this paper.



rate research

Read More

Power system dynamic state estimation (DSE) remains an active research area. This is driven by the absence of accurate models, the increasing availability of fast-sampled, time-synchronized measurements, and the advances in the capability, scalability, and affordability of computing and communications. This paper discusses the advantages of DSE as compared to static state estimation, and the implementation differences between the two, including the measurement configuration, modeling framework and support software features. The important roles of DSE are discussed from modeling, monitoring and operation aspects for todays synchronous machine dominated systems and the future power electronics-interfaced generation systems. Several examples are presented to demonstrate the benefits of DSE on enhancing the operational robustness and resilience of 21st century power system through time critical applications. Future research directions are identified and discussed, paving the way for developing the next generation of energy management systems.
352 - Peng Gao , Fei Shao , Xiaoyuan Liu 2020
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external threat knowledge provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we propose ThreatRaptor, a system that facilitates threat hunting in computer systems using OSCTI. Built upon system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query for hunting, and (4) an efficient query execution engine to search the big audit logging data. Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper proposes a model for cyber and physical data fusion using a data link for detecting attacks on a Cyber-Physical Power System (CPPS). Two-step principal component analysis (PCA) is used for classifying the systems operating status. An adaptive synthetic sampling algorithm is used to reduce the imbalance in the categories samples. The loss function is improved according to the feature intensity difference of the attack event, and an integrated classifier is established using a classification algorithm based on the cost-sensitive gradient boosting decision tree (CS-GBDT). The simulation results show that the proposed method provides higher accuracy, recall, and F-Score than comparable algorithms.
Understanding smart grid cyber attacks is key for developing appropriate protection and recovery measures. Advanced attacks pursue maximized impact at minimized costs and detectability. This paper conducts risk analysis of combined data integrity and availability attacks against the power system state estimation. We compare the combined attacks with pure integrity attacks - false data injection (FDI) attacks. A security index for vulnerability assessment to these two kinds of attacks is proposed and formulated as a mixed integer linear programming problem. We show that such combined attacks can succeed with fewer resources than FDI attacks. The combined attacks with limited knowledge of the system model also expose advantages in keeping stealth against the bad data detection. Finally, the risk of combined attacks to reliable system operation is evaluated using the results from vulnerability assessment and attack impact analysis. The findings in this paper are validated and supported by a detailed case study.
136 - Peng Gao , Fei Shao , Xiaoyuan Liu 2021
Log-based cyber threat hunting has emerged as an important solution to counter sophisticated cyber attacks. However, existing approaches require non-trivial efforts of manual query construction and have overlooked the rich external knowledge about threat behaviors provided by open-source Cyber Threat Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI. Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا