Do you want to publish a course? Click here

Answering Summation Queries for Numerical Attributes under Differential Privacy

82   0   0.0 ( 0 )
 Added by Yikai Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this work we explore the problem of answering a set of sum queries under Differential Privacy. This is a little understood, non-trivial problem especially in the case of numerical domains. We show that traditional techniques from the literature are not always the best choice and a more rigorous approach is necessary to develop low error algorithms.



rate research

Read More

We propose a new mechanism to accurately answer a user-provided set of linear counting queries under local differential privacy (LDP). Given a set of linear counting queries (the workload) our mechanism automatically adapts to provide accuracy on the workload queries. We define a parametric class of mechanisms that produce unbiased estimates of the workload, and formulate a constrained optimization problem to select a mechanism from this class that minimizes expected total squared error. We solve this optimization problem numerically using projected gradient descent and provide an efficient implementation that scales to large workloads. We demonstrate the effectiveness of our optimization-based approach in a wide variety of settings, showing that it outperforms many competitors, even outperforming existing mechanisms on the workloads for which they were intended.
Differentially private algorithms for answering sets of predicate counting queries on a sensitive database have many applications. Organizations that collect individual-level data, such as statistical agencies and medical institutions, use them to safely release summary tabulations. However, existing techniques are accurate only on a narrow class of query workloads, or are extremely slow, especially when analyzing more than one or two dimensions of the data. In this work we propose HDMM, a new differentially private algorithm for answering a workload of predicate counting queries, that is especially effective for higher-dimensional datasets. HDMM represents query workloads using an implicit matrix representation and exploits this compact representation to efficiently search (a subset of) the space of differentially private algorithms for one that answers the input query workload with high accuracy. We empirically show that HDMM can efficiently answer queries with lower error than state-of-the-art techniques on a variety of low and high dimensional datasets.
In this work we describe the High-Dimensional Matrix Mechanism (HDMM), a differentially private algorithm for answering a workload of predicate counting queries. HDMM represents query workloads using a compact implicit matrix representation and exploits this representation to efficiently optimize over (a subset of) the space of differentially private algorithms for one that is unbiased and answers the input query workload with low expected error. HDMM can be deployed for both $epsilon$-differential privacy (with Laplace noise) and $(epsilon, delta)$-differential privacy (with Gaussian noise), although the core techniques are slightly different for each. We demonstrate empirically that HDMM can efficiently answer queries with lower expected error than state-of-the-art techniques, and in some cases, it nearly matches existing lower bounds for the particular class of mechanisms we consider.
We consider the task of enumerating and counting answers to $k$-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear$^ast$ delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the querys homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. $^ast)$ By sublinear we mean $O(n^{1-varepsilon})$ for some $varepsilon>0$, where $n$ is the size of the active domain of the current database.
Private collection of statistics from a large distributed population is an important problem, and has led to large scale deployments from several leading technology companies. The dominant approach requires each user to randomly perturb their input, leading to guarantees in the local differential privacy model. In this paper, we place the various approaches that have been suggested into a common framework, and perform an extensive series of experiments to understand the tradeoffs between different implementation choices. Our conclusion is that for the core problems of frequency estimation and heavy hitter identification, careful choice of algorithms can lead to very effective solutions that scale to millions of users
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا