Do you want to publish a course? Click here

First Measurement of the Charged Current $overline{ u}_{mu}$ Double Differential Cross Section on a Water Target without Pions in the final state

89   0   0.0 ( 0 )
 Added by Walter Toki
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper reports the first differential measurement of the charged-current $overline{ u}_{mu}$ interaction cross section on water with no pions in the final state. The unfolded flux-averaged measurement using the T2K off-axis near detector is given in double differential bins of $mu^+$ momentum and angle. The integrated cross section in a restricted phase space is $sigma=left(1.11pm0.18right)times10^{-38}$ cm$^{2}$ per water molecule. Comparisons with several nuclear models are also presented.



rate research

Read More

This paper reports the first differential measurement of the charged-current interaction cross section of $ u_{mu}$ on water with no pions in the final state. This flux-averaged measurement has been made using the T2K experiments off-axis near detector, and is reported in doubly-differential bins of muon momentum and angle. The flux-averaged total cross section in a restricted region of phase space was found to be $ sigma= (0.95 pm 0.08 (mbox{stat}) pm 0.06 (mbox{det. syst.}) pm 0.04(mbox{model syst.}) pm{} 0.08(mbox{flux}) ) times 10^{-38} mbox{cm}^2$ per n.
149 - K. Abe , R. Akutsu , A. Ali 2020
This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8$times$10$^{20}$ and 6.3$times$10$^{20}$ protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects.
104 - K. Abe , N. Akhlaq , R. Akutsu 2020
This paper reports the first simultaneous measurement of the double differential muon neutrino charged-current cross section on oxygen and carbon without pions in the final state as a function of the outgoing muon kinematics, made at the ND280 off-axis near detector of the T2K experiment. The ratio of the oxygen and carbon cross sections is also provided to help validate various models ability to extrapolate between carbon and oxygen nuclear targets, as is required in T2K oscillation analyses. The data are taken using a neutrino beam with an energy spectrum peaked at 0.6 GeV. The extracted measurement is compared with the prediction from different Monte Carlo neutrino-nucleus interaction event generators, showing particular model separation for very forward-going muons. Overall, of the models tested, the result is best described using Local Fermi Gas descriptions of the nuclear ground state with RPA suppression.
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($frac{d^2sigma}{dT_mu dcostheta_mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($sigma[E_ u]$) and the single differential cross section ($frac{dsigma}{dQ^2}$) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
233 - Tianlu Yuan 2016
The Tokai to Kamioka (T2K) experiment is a 295-km long-baseline neutrino experiment aimed towards the measurement of neutrino oscillation parameters ${theta}_{13}$ and ${theta}_{23}$. Precise measurement of these parameters requires accurate knowledge of neutrino cross sections. We present a flux-averaged double differential measurement of the charged-current cross section on water with zero pions in the final state using the T2K off-axis near detector, ND280. A selection of $ u_mu$ charged- current events occurring in the Pi-Zero subdetector (P{O}D) of ND280 is performed with $5.8 times 10^{20}$ protons on target. The charged, outgoing tracks are required to enter and be identified by the ND280 Tracker. The cross section is determined using an unfolding technique. By separating the dataset into time periods when the P{O}D water layers are filled with water and when they are empty, a subtraction method provides a distribution of $ u_mu$ interactions on water only. Systematic uncertainties on the neutrino flux, interaction model, and detector simulation are propagated numerically within the unfolding framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا