No Arabic abstract
An increasing number of low-power Internet of Things (IoT) devices will be widely deployed in the near future. Considering the short-range communication of low-power devices, multi-hop transmissions will become an important transmission mechanism in IoT networks. It is crucial for lowpower devices to transmit data over long distances via multihop in a low-delay and reliable way. Small-world characteristics of networks indicate that the network has an advantage of a small Average Shortest-path Length (ASL) and a high Average Clustering Coefficient (ACC). In this paper, a new IoT routing mechanism considering small-world characteristics is proposed to reduce the delay and improve the reliability. The ASL and ACC are derived for performance analysis of small-world characteristics in IoT networks based on Cayley graphs. Besides, the reliability and delay models are proposed for Small-World IoT based on Cayley grapHs (SWITCH). Simulation results demonstrate that SWITCH has lower delay and better reliability than that of conventional Nearest Neighboring Routing (NNR). Moreover, the maximum delay of SWITCH is reduced by 50.6% compared with that by NNR.
The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors.
In this paper, we consider the IoT data discovery problem in very large and growing scale networks. Specifically, we investigate in depth the routing table summarization techniques to support effective and space-efficient IoT data discovery routing. Novel summarization algorithms, including alphabetical based, hash based, and meaning based summarization and their corresponding coding schemes are proposed. The issue of potentially misleading routing due to summarization is also investigated. Subsequently, we analyze the strategy of when to summarize in order to balance the tradeoff between the routing table compression rate and the chance of causing misleading routing. For experimental study, we have collected 100K IoT data streams from various IoT databases as the input dataset. Experimental results show that our summarization solution can reduce the routing table size by 20 to 30 folds with 2-5% increase in latency when compared with similar peer-to-peer discovery routing algorithms without summarization. Also, our approach outperforms DHT based approaches by 2 to 6 folds in terms of latency and traffic.
Future IoT networks consist of heterogeneous types of IoT devices (with various communication types and energy constraints) which are assumed to belong to an IoT service provider (ISP). To power backscattering-based and wireless-powered devices, the ISP has to contract with an energy service provider (ESP). This article studies the strategic interactions between the ISP and its ESP and their implications on the joint optimal time scheduling and energy trading for heterogeneous devices. To that end, we propose an economic framework using the Stackelberg game to maximize the network throughput and energy efficiency of both the ISP and ESP. Specifically, the ISP leads the game by sending its optimal service time and energy price request (that maximizes its profit) to the ESP. The ESP then optimizes and supplies the transmission power which satisfies the ISPs request (while maximizing ESPs utility). To obtain the Stackelberg equilibrium (SE), we apply a backward induction technique which first derives a closed-form solution for the ESP. Then, to tackle the non-convex optimization problem for the ISP, we leverage the block coordinate descent and convex-concave procedure techniques to design two partitioning schemes (i.e., partial adjustment (PA) and joint adjustment (JA)) to find the optimal energy price and service time that constitute local SEs. Numerical results reveal that by jointly optimizing the energy trading and the time allocation for heterogeneous IoT devices, one can achieve significant improvements in terms of the ISPs profit compared with those of conventional transmission methods. Different tradeoffs between the ESPs and ISPs profits and complexities of the PA/JA schemes can also be numerically tuned. Simulations also show that the obtained local SEs approach the socially optimal welfare when the ISPs benefit per transmitted bit is higher than a given threshold.
An important modulation technique for Internet of Things (IoT) is the one proposed by the LoRa allianceTM. In this paper we analyze the M-ary LoRa modulation in the time and frequency domains. First, we provide the signal description in the time domain, and show that LoRa is a memoryless continuous phase modulation. The cross-correlation between the transmitted waveforms is determined, proving that LoRa can be considered approximately an orthogonal modulation only for large M. Then, we investigate the spectral characteristics of the signal modulated by random data, obtaining a closed-form expression of the spectrum in terms of Fresnel functions. Quite surprisingly, we found that LoRa has both continuous and discrete spectra, with the discrete spectrum containing exactly a fraction 1/M of the total signal power.
The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.