Strongly correlated superfluid order parameters from dc Josephson supercurrents


Abstract in English

The dc Josephson effect provides a powerful phase-sensitive tool for investigating superfluid order parameters. We report on the observation of dc Josephson supercurrents in strongly interacting fermionic superfluids across a tunnelling barrier in the absence of any applied potential difference. For sufficiently strong barriers, we observe a sinusoidal current-phase relation, in agreement with Josephsons seminal prediction. We map out the zero-resistance state and its breakdown as a function of junction parameters, extracting the Josephson critical current behaviour. By comparing our results with an analytic model, we determine the pair condensate fraction throughout the Bardeen-Cooper-Schrieffer - Bose-Einstein Condensation crossover. Our work suggests that coherent Josephson transport may be used to pin down superfluid order parameters in diverse atomic systems, even in the presence of strong correlations.

Download