No Arabic abstract
I would like to review recent efforts of detailed chemical abundance measurements for field Milky Way halo stars. Thanks to the advent of wide-field spectroscopic surveys up to a several kpc from the Sun, large samples of field halo stars with detailed chemical measurements are continuously expanding. Combination of the chemical information and full six dimensional phase-space information is now recognized as a powerful tool to identify cosmological accretion events that have built a sizable fraction of the present-day stellar halo. Future observational prospects with wide-field spectroscopic surveys and theoretical prospects with supernova nucleosynthetic yields are also discussed.
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Galactic plane. High-resolution, high signal-to-noise spectra for the sample stars obtained with Subaru/HDS are used to derive chemical abundances of Na, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y and Ba with an LTE abundance analysis code. The resulting abundance data are combined with those presented in literature that mostly targeted at smaller Z_max stars, and both data are used to investigate any systematic trends in detailed abundance patterns depending on their kinematics. It is shown that, in the metallicity range of -2<[Fe/H]<-1, the [Mg/Fe] ratios for the stars with Z_max>5 kpc are systematically lower (~0.1 dex) than those with smaller Z_max. This result of the lower [alpha/Fe] for the assumed outer halo stars is consistent with previous studies that found a signature of lower [alpha/Fe] ratios for stars with extreme kinematics. A distribution of the [Mg/Fe] ratios for the outer halo stars partly overlaps with that for stars belonging to the Milky Way dwarf satellites in the metallicity interval of -2<[Fe/H]<-1 and spans a range intermediate between the distributions for the inner halo stars and the stars belonging to the satellites. Our results confirm inhomogeneous nature of chemical abundances within the Milky Way stellar halo depending on kinematic properties of constituent stars as suggested by earlier studies. Possible implications for the formation of the Milky Way halo and its relevance to the suggested dual nature of the halo are discussed.
It is widely believed that star clusters form with low star formation efficiencies. With the onset of stellar winds by massive stars or finally when the first super nova blows off, the residual gas is driven out of the embedded star cluster. Due to this fact a large amount, if not all, of the stars become unbound and disperse in the gravitational potential of the galaxy. In this context, Kroupa (2002) suggested a new mechanism for the emergence of thickened Galactic discs. Massive star clusters add kinematically hot components to the galactic field populations, building up in this way, the Galactic thick disc as well. In this work we perform, for the first time, numerical simulations to investigate this scenario for the formation of the galactic discs of the Milky Way. We find that a significant kinematically hot population of stars may be injected into the disk of a galaxy such that a thick disk emerges. For the MW the star clusters that formed the thick disk must have had masses of about 10^6 Msol.
We summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way halo. Interpretation of the extant data in light of cosmological numerical simulations suggests that the Milky Way has been subject to an unusually intense accretion history at z >~ 1.5.
The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar $durations$ of star formation prior to their merger, they differ in [$alpha$/Fe]-[Fe/H] space, with the GES population bending to lower [$alpha$/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a Milky Way to argue that the different tracks of the halo stars through the [$alpha$/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [$alpha$/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type~II SNe to Type~Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [$alpha$/Fe]. Thus the different positions of the downturns in the [$alpha$/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies. We argue that cosmological simulations match a wide range of independent observations, breaking degeneracies that exist in simpler models.
We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R<7-8kpc) and outer (R>9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as the thin disc in the remaining 8 Gyr. Our results suggest that a closed box model is able to fit all the available constraints in the inner disc. A closed box system is qualitatively equivalent to a regime where the accretion rate, at high redshift, maintains a high gas fraction in the inner disc. In such conditions, the SFR is mainly governed by the high turbulence of the ISM. By z~1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas not consumed during the thick disc phase, and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z~2, about 2 Gyr before the onset of the thin disc formation in the inner disc.