Based on the scheme of variational Monte Carlo sampling, we develop an accurate and efficient two-dimensional tensor-network algorithm to simulate quantum lattice models. We find that Monte Carlo sampling shows huge advantages in dealing with finite projected entangled pair states, which allows significantly enlarged system size and improves the accuracy of tensor network simulation. We demonstrate our method on the square-lattice antiferromagnetic Heisenberg model up to $32 times 32$ sites, as well as a highly frustrated $J_1-J_2$ model up to $24times 24$ sites. The results, including ground state energy and spin correlations, are in excellent agreement with those of the available quantum Monte Carlo or density matrix renormalization group methods. Therefore, our method substantially advances the calculation of 2D tensor networks for finite systems, and potentially opens a new door towards resolving many challenging strongly correlated quantum many-body problems.