Do you want to publish a course? Click here

Itinerant topological magnons in Haldane Hubbard model with a nearly-flat electron band

129   0   0.0 ( 0 )
 Added by Zhao-Long Gu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We elaborate the first theoretical realization of two dimensional itinerant topological magnons, based on the quarter filled Haldane-Hubbard model with a nearly-flat electron band. By using the exact diagonalization method with a projection onto this band, we obtain the spin wave excitations over the itinerant ferromagnetic ground state. In the flatband limit, the excitation exhibits similar dispersion to the free electron band with Dirac magnons. The nonflatness of the electron band opens a topological gap at Dirac points and leads to an acoustic magnon band with a nonzero Chern number. We further show that tuning the sublattice Hubbard interactions or the next-nearest-neighbor hopping can induce a topological transition characterized by the gap closing and reopening, and the existence of the in-gap magnons on magnetic domain walls. We find an exact set of bases for magnons in the flatband limit constructed from sublattice particle-hole vectors and derive an effective model to explore the origin of the topological magnon which is attributed to the ``mass inversion mechanism.



rate research

Read More

We study the flat-band ferromagnetic phase of a topological Hubbard model within a bosonization formalism and, in particular, determine the spin-wave excitation spectrum. We consider a square lattice Hubbard model at 1/4-filling whose free-electron term is the pi-flux model with topologically nontrivial and nearly flat energy bands. The electron spin is introduced such that the model either explicitly breaks time-reversal symmetry (correlated flat-band Chern insulator) or is invariant under time-reversal symmetry (correlated flat-band $Z_2$ topological insulator). We generalize for flat-band Chern and topological insulators the bosonization formalism [Phys. Rev. B 71, 045339 (2005)] previously developed for the two-dimensional electron gas in a uniform and perpendicular magnetic field at filling factor u=1. We show that, within the bosonization scheme, the topological Hubbard model is mapped into an effective interacting boson model. We consider the boson model at the harmonic approximation and show that, for the correlated Chern insulator, the spin-wave excitation spectrum is gapless while, for the correlated topological insulator, gapped. We briefly comment on the possible effects of the boson-boson (spin-wave--spin-wave) coupling.
We study the flat-band ferromagnetic phase of the Haldane-Hubbard model on a honeycomb lattice within a bosonization scheme for flat-band Chern insulators, focusing on the calculation of the spin-wave excitation spectrum. We consider the Haldane-Hubbard model with the noninteracting lower bands in a nearly-flat band limit, previously determined for the spinless model, and at 1/4-filling of its corresponding noninteracting limit. Within the bosonization scheme, the Haldane-Hubbard model is mapped into an effective interacting boson model, whose quadratic term allows us to determine the spin-wave spectrum at the harmonic approximation. We show that the excitation spectrum has two branches with a Goldstone mode and Dirac points at center and at the K and K points of the first Brillouin zone, respectively. We also consider the effects on the spin-wave spectrum due to an energy offset in the on-site Hubbard repulsion energies and due to the presence of an staggered on-site energy term, both quantities associated with the two triangular sublattices. In both cases, we find that an energy gap opens at the K and K points. Moreover, we also find some evidences for an instability of the flat-band ferromagnetic phase in the presence of the staggered on-site energy term. We provide some additional results for the square lattice topological Hubbard model previous studied within the bosonization formalism and comment on the differences between the bosonization scheme implementation for the correlated Chern insulators on both square and honeycomb lattices.
Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flat band is considered as the prototype. This model can be viewed as a quarter filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to $pi$, leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes which is consistent with the bulk-edge correspondence. The Hubbard interaction driven transition reveals a new mechanism to realize non-trivial magnon bands.
107 - R. Wang , , Z. Song 2021
A moir{e} system is formed when two periodic structures have a slightly mismatched period, resulting in unusual strongly correlated states in the presence of particle-particle interactions. The periodic structures can arise from the intrinsic crystalline order and periodic external field. We investigate a one-dimensional Hubbard models with periodic on-site potential of period $n_{0}$, which is commensurate to the lattice constant. For large $% n_{0}$, exact solution demonstrates that there is a midgap flat band with zero energy in the absence of Hubbard interaction. Each moir{e} unit cell contributes two zero energy levels to the flat band. In the presence of Hubbard interaction, the midgap physics is demonstrated to be well described by a uniform Hubbard chain, in which the effective hopping and on-site interaction strength, can be controlled by the amplitude and period of the external field. Numerical simulations are performed to demonstrate the correlated behaviors in the finite-sized moir{e} Hubbard system, including the existence of $eta $-pairing state, and bound pair oscillation. This finding provides a method to enhance the correlated effect by a spatially periodic external field.
Existing Quantum Monte Carlo studies have investigated the properties of fermions on a Lieb (CuO$_2$) lattice interacting with an on-site, or near-neighbor electron-electron coupling. Attention has focused on the interplay of such interactions with the macroscopic degeneracy of local zero energy modes, from which Bloch states can be formed to produce a flat band in which energy is independent of momentum. The resulting high density of states, in combination with the Stoner criterion, suggests that there should be pronounced instabilities to ordered phases. Indeed, a theorem by Lieb rigorously establishes the existence of ferrimagnetic order. Here we study the charge density wave phases induced by electron-phonon coupling on the Lieb lattice, as opposed to previous work on electron-electron interactions. Our key result is the demonstration of charge density wave (CDW) phases at one-third and two-thirds fillings, characterized by long-range density density correlations between doubly occupied sites on the minority or majority sublattice, and an accompanying gap. We also compute the transition temperature to the ordered phase as a function of the electron-phonon coupling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا