Do you want to publish a course? Click here

Background in $gamma$-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory

103   0   0.0 ( 0 )
 Added by Tam\\'as Sz\\\"ucs
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relevant interaction energies for astrophysical radiative capture reactions are very low, much below the repulsive Coulomb barrier. This leads to low cross sections, low counting rates in $gamma$-ray detectors, and therefore the need to perform such experiments at ion accelerators placed in underground settings, shielded from cosmic rays. Here, the feasibility of such experiments in the new shallow-underground accelerator laboratory in tunnels VIII and IX of the Felsenkeller site in Dresden, Germany, is evaluated. To this end, the no-beam background in three different types of germanium detectors, i.e. a Euroball/Miniball triple cluster and two large monolithic detectors, is measured over periods of 26-66 days. The cosmic-ray induced background is found to be reduced by a factor of 500-2400, by the combined effects of, first, the 140 meters water equivalent overburden attenuating the cosmic muon flux by a factor of 40, and second, scintillation veto detectors gating out most of the remaining muon-induced effects. The new background data are compared to spectra taken with the same detectors at the Earths surface and at other underground sites. Subsequently, the beam intensity from the cesium sputter ion source installed in Felsenkeller has been studied over periods of several hours. Based on the background and beam intensity data reported here, for the example of the $^{12}$C($alpha$,$gamma$)$^{16}$O reaction it is shown that highly sensitive experiments will be possible.



rate research

Read More

The muon intensity and angular distribution in the shallow-underground laboratory Felsenkeller in Dresden, Germany have been studied using a portable muon detector based on the close cathode chamber design. Data has been taken at four positions in Felsenkeller tunnels VIII and IX, where a new 5 MV underground ion accelerator is being installed, and in addition at four positions in Felsenkeller tunnel IV, which hosts a low-radioactivity counting facility. At each of the eight positions studied, seven different orientations of the detector were used to compile a map of the upper hemisphere with 0.85{deg} angular resolution. The muon intensity is found to be suppressed by a factor of 40 due to the 45 m thick rock overburden, corresponding to 140 meters water equivalent. The angular data are matched by two different simulations taking into account the known geodetic features of the terrain: First, simply by determining the cutoff energy using the projected slant depth in rock and the known muon energy spectrum, and second, in a Geant4 simulation propagating the muons through a column of rock equal to the known slant depth. The present data are instrumental for studying muon-induced effects at these depths and also in the planning of an active veto for accelerator-based underground nuclear astrophysics experiments.
Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. At the same time the next generation of high resolution gamma-ray spectrometers, based on gamma-ray tracking, for studying the structure of these exotic nuclei are being developed. One of the main differences in tracking of $gamma$ rays versus charged particles is that the gamma rays do not deposit their energy continuously in the detector, but in a few discrete steps. Also, in the field of nuclear spectroscopy, the location of the source is mostly well known while the exact interaction position in the detector is the unknown quantity. This makes the challenges of gamma-ray tracking in germanium somewhat different compared to vertexing in silicon detectors. In these proceedings we present the methods for determining the 3D interaction positions in the detector and how these are used to reconstruct the gamma-ray tracks in the AGATA detector array. We also present preliminary simulation results of a proposed in-beam method to measure the interaction position resolution in the germanium detectors.
The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3He({alpha},{gamma})7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,{gamma})15O reaction and in emission profile by the 12C(p,{gamma})13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C({alpha},{gamma})16O reaction. In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator. The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from {gamma}-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50{mu}A, beams of 1H+, 4He+ , and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
The China Jinping Underground Laboratory, inaugurated in 2010, is an underground research facility with the deepest rock overburden and largest space by volume in the world. The first-generation science programs include dark matter searches conducted by the CDEX and PandaX experiments. These activities are complemented by measurements of ambient radioactivity and installation of low-background counting systems. Phase II of the facility is being constructed, and its potential research projects are being formulated. In this review, we discuss the history, key features, results, and status of this facility and its experimental programs, as well as their future evolution and plans.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا