No Arabic abstract
On 2019 August 14 the Laser Interferometer Gravitational Wave Observatory (LIGO) and the Virgo gravitational wave interferometer announced the detection of a binary merger, S190814bv, with a low false alarm rate (FAR) of about 1 in $1.6times 10^{25}$ years, a distance of $267pm 52$ Mpc, a 90% (50%) localization region of about 23 (5) deg$^2$, and a probability of being a neutron star--black hole (NS-BH) merger of $>99%$. The LIGO/Virgo Collaboration (LVC) defines NS-BH such that the lighter binary member has a mass of $<3$ M$_odot$ and the more massive one has $>5$ M$_odot$, and this classification is in principle consistent with a BH-BH merger depending on the actual upper mass cut-off for neutron stars. Additionally, the LVC designated a probability that the merger led to matter outside the final BH remnant of $<1%$, suggesting that an electromagnetic (EM) counterpart is unlikely. Here we report our optical follow-up observations of S190814bv using the Magellan Baade 6.5 m telescope to target all 96 galaxies in the GLADE catalog within the 50% localization volume (representing about 70% of the integrated luminosity within this region). No counterpart was identified to a median $3sigma$ limiting magnitude of $i=22.2$ ($M_iapprox -14.9$ mag), comparable to the brightness of the optical counterpart of the binary neutron star merger GW170817 at the distance of S190814bv; similarly, we can rule out an on-axis jet typical of short GRBs. However, we cannot rule out other realistic models, such as a kilonova with only $sim 0.01$ M$_odot$ of lanthanide-rich material, or an off-axis jet with a viewing angle of $theta_{rm obs}gtrsim 15^circ$.
GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binarys lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow up observations, no electromagnetic counterpart has been identified. Here we present new radio observations of 75 galaxies within the localization volume at $Delta tapprox 35-266$ days post-merger. Our observations cover $sim32$% of the total stellar luminosity in the final localization volume and extend to later timescales than previously-reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of $sim46^{circ}$ (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of $epsilon_e=0.1$ and $epsilon_B=0.01$, we can rule out a typical short gamma-ray burst-like Gaussian jet with isotropic-equivalent kinetic energy $2times10^{51}$ erg propagating into a constant density medium $ngtrsim0.01$ cm$^{-3}$. These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges, and possible advantages, of applying similar search strategies to future events using current and upcoming radio facilities.
We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a $30,{rm deg}^2$ field at $Delta T$=2, 9 and 33 days post-merger at a frequency of 944,MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers $89%$ of the LIGO/Virgo localisation region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, object[AT2019osy]{AT2019osy}, we performed multi-wavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from neutron star-black hole mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date.
On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star--black hole (NSBH) merger, or potentially a low-mass binary black hole merger. Due to the low false alarm rate and the precise localization (23 deg$^2$ at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to a NSBH merger. To search for potential counterparts, the GROWTH collaboration performed real-time image subtraction on 6 nights of public Dark Energy Camera (DECam) images acquired in the three weeks following the merger, covering $>$98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and we placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be $M_mathrm{ej} < 0.04$~$M_{odot}$ at polar viewing angles, or $M_mathrm{ej} < 0.03$~$M_{odot}$ if the opacity is $kappa < 2$~cm$^2$g$^{-1}$. Assuming a tidal deformability for the neutron star at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be $ chi < 0.7$ for mass ratios $Q < 6$, with weaker constraints for more compact neutron stars. We publicly release the photometry from this campaign at http://www.astro.caltech.edu/~danny/static/s190814bv.
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227$pm$92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely non-astrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of 6 more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing, exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of followups needed for discovery.
We present a wide-field optical imaging search for electromagnetic counterparts to the likely neutron star - black hole (NS-BH) merger GW190814/S190814bv. This compact binary merger was detected through gravitational waves by the LIGO/Virgo interferometers, with masses suggestive of a NS-BH merger. We imaged the LIGO/Virgo localization region using the MegaCam instrument on the Canada-France-Hawaii Telescope. We describe our hybrid observing strategy of both tiling and galaxy-targeted observations, as well as our image differencing and transient detection pipeline. Our observing campaign produced some of the deepest multi-band images of the region between 1.7 and 8.7 days post-merger, reaching a 5sigma depth of g > 22.8 (AB mag) at 1.7 days and i > 23.1 and i > 23.9 at 3.7 and 8.7 days, respectively. These observations cover a mean total integrated probability of 67.0% of the localization region. We find no compelling candidate transient counterparts to this merger in our images, which suggests that either the lighter object was tidally disrupted inside of the BHs innermost stable circular orbit, the transient lies outside of the observed sky footprint, or the lighter object is a low-mass BH. We use 5sigma source detection upper limits from our images in the NS-BH interpretation of this merger to constrain the mass of the kilonova ejecta to be Mej < 0.015Msun for a blue (kappa = 0.5 cm^2 g^-1) kilonova, and Mej < 0.04Msun for a red (kappa = 5-10 cm^2 g^-1) kilonova. Our observations emphasize the key role of large-aperture telescopes and wide-field imagers such as CFHT MegaCam in enabling deep searches for electromagnetic counterparts to gravitational wave events.