Do you want to publish a course? Click here

On Universal Eigenvalues of Casimir Operator

141   0   0.0 ( 0 )
 Added by Maneh Avetisyan
 Publication date 2019
  fields Physics
and research's language is English
 Authors M.Avetisyan




Ask ChatGPT about the research

Motivated by the universal knot polynomials in the gauge Chern-Simons theory, we show that the values of the second Casimir operator on an arbitrary power of Cartan product of $X_2$ and adjoint representations of simple Lie algebras can be represented in a universal form. We show that it complies with $Nlongrightarrow -N$ duality of the same operator for $SO(2n)$ and $Sp(2n)$ algebras (the part of $Nleftrightarrow-N$ duality of gauge $SO(2n)$ and $Sp(2n)$ theories). We discuss the phenomena of non-zero universal values of Casimir operator on zero representations.



rate research

Read More

124 - A.P.Isaev , S.O.Krivonos 2021
We construct characteristic identities for the split (polarized) Casimir operators of the simple Lie algebras in defining (minimal fundamental) and adjoint representations. By means of these characteristic identities, for all simple Lie algebras we derive explicit formulae for invariant projectors onto irreducible subrepresentations in T^{otimes 2} in two cases, when T is the defining and the adjoint representation. In the case when T is the defining representation, these projectors and the split Casimir operator are used to explicitly write down invariant solutions of the Yang-Baxter equations. In the case when T is the adjoint representation, these projectors and characteristic identities are considered from the viewpoint of the universal description of the simple Lie algebras in terms of the Vogel parameters.
We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general energy independent matching conditions at the vertices. The regularized spectral determinant of the Dirac operator is also obtained as the derivative of the zeta function at a special value. In each case the zeta function is formulated using a contour integral method, which extends results obtained for Laplace and Schrodinger operators on graphs.
235 - Davide Fermi 2019
The Casimir energy for a massless, neutral scalar field in presence of a point interaction is analyzed using a general zeta-regularization approach developed in earlier works. In addition to a regular bulk contribution, there arises an anomalous boundary term which is infinite despite renormalization. The intrinsic nature of this anomaly is briefly discussed.
159 - Davide Fermi 2015
This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the Introduction of the present work.
In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type $Itimes N$ where $I$ is an interval of the real line and $N$ is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configurations as we consider all possible boundary conditions that are allowed to be imposed on the scalar fields. We employ the spectral zeta function formalism in the framework of scattering theory in order to obtain an expression for the Casimir energy and the corresponding Casimir force on the piston. We provide explicit results for the Casimir force when the manifold $N$ is a $d$-dimensional sphere and a disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا