No Arabic abstract
Given a data set $mathcal{D}$ containing millions of data points and a data consumer who is willing to pay for $$X$ to train a machine learning (ML) model over $mathcal{D}$, how should we distribute this $$X$ to each data point to reflect its value? In this paper, we define the relative value of data via the Shapley value, as it uniquely possesses properties with appealing real-world interpretations, such as fairness, rationality and decentralizability. For general, bounded utility functions, the Shapley value is known to be challenging to compute: to get Shapley values for all $N$ data points, it requires $O(2^N)$ model evaluations for exact computation and $O(Nlog N)$ for $(epsilon, delta)$-approximation. In this paper, we focus on one popular family of ML models relying on $K$-nearest neighbors ($K$NN). The most surprising result is that for unweighted $K$NN classifiers and regressors, the Shapley value of all $N$ data points can be computed, exactly, in $O(Nlog N)$ time -- an exponential improvement on computational complexity! Moreover, for $(epsilon, delta)$-approximation, we are able to develop an algorithm based on Locality Sensitive Hashing (LSH) with only sublinear complexity $O(N^{h(epsilon,K)}log N)$ when $epsilon$ is not too small and $K$ is not too large. We empirically evaluate our algorithms on up to $10$ million data points and even our exact algorithm is up to three orders of magnitude faster than the baseline approximation algorithm. The LSH-based approximation algorithm can accelerate the value calculation process even further. We then extend our algorithms to other scenarios such as (1) weighed $K$NN classifiers, (2) different data points are clustered by different data curators, and (3) there are data analysts providing computation who also requires proper valuation.
How much is my data worth? is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits among multiple data contributors and determining prospective compensation when data breaches happen. In this paper, we study the problem of data valuation by utilizing the Shapley value, a popular notion of value which originated in coopoerative game theory. The Shapley value defines a unique payoff scheme that satisfies many desiderata for the notion of data value. However, the Shapley value often requires exponential time to compute. To meet this challenge, we propose a repertoire of efficient algorithms for approximating the Shapley value. We also demonstrate the value of each training instance for various benchmark datasets.
Information-theoretic quantities, such as conditional entropy and mutual information, are critical data summaries for quantifying uncertainty. Current widely used approaches for computing such quantities rely on nearest neighbor methods and exhibit both strong performance and theoretical guarantees in certain simple scenarios. However, existing approaches fail in high-dimensional settings and when different features are measured on different scales.We propose decision forest-based adaptive nearest neighbor estimators and show that they are able to effectively estimate posterior probabilities, conditional entropies, and mutual information even in the aforementioned settings.We provide an extensive study of efficacy for classification and posterior probability estimation, and prove certain forest-based approaches to be consistent estimators of the true posteriors and derived information-theoretic quantities under certain assumptions. In a real-world connectome application, we quantify the uncertainty about neuron type given various cellular features in the Drosophila larva mushroom body, a key challenge for modern neuroscience.
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore, which allows them to learn through explicitly memorizing the training datapoints. While effective, these models often require retrieval from a large datastore at test time, significantly increasing the inference overhead and thus limiting the deployment of non-parametric NLMs in practical applications. In this paper, we take the recently proposed $k$-nearest neighbors language model (Khandelwal et al., 2019) as an example, exploring methods to improve its efficiency along various dimensions. Experiments on the standard WikiText-103 benchmark and domain-adaptation datasets show that our methods are able to achieve up to a 6x speed-up in inference speed while retaining comparable performance. The empirical analysis we present may provide guidelines for future research seeking to develop or deploy more efficient non-parametric NLMs.
The k-Nearest Neighbors (kNN) classifier is a fundamental non-parametric machine learning algorithm. However, it is well known that it suffers from the curse of dimensionality, which is why in practice one often applies a kNN classifier on top of a (pre-trained) feature transformation. From a theoretical perspective, most, if not all theoretical results aimed at understanding the kNN classifier are derived for the raw feature space. This leads to an emerging gap between our theoretical understanding of kNN and its practical applications. In this paper, we take a first step towards bridging this gap. We provide a novel analysis on the convergence rates of a kNN classifier over transformed features. This analysis requires in-depth understanding of the properties that connect both the transformed space and the raw feature space. More precisely, we build our convergence bound upon two key properties of the transformed space: (1) safety -- how well can one recover the raw posterior from the transformed space, and (2) smoothness -- how complex this recovery function is. Based on our result, we are able to explain why some (pre-trained) feature transformations are better suited for a kNN classifier than other. We empirically validate that both properties have an impact on the kNN convergence on 30 feature transformations with 6 benchmark datasets spanning from the vision to the text domain.
We formulate approximate nearest neighbor (ANN) search as a multi-label classification task. The implications are twofold. First, tree-based indexes can be searched more efficiently by interpreting them as models to solve this task. Second, in addition to index structures designed specifically for ANN search, any type of classifier can be used as an index.