Do you want to publish a course? Click here

H.E.S.S. searches for TeV gamma rays associated to high-energy neutrinos

67   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detection of an astrophysical flux of high-energy neutrinos by IceCube is a major step forward in the search for the origin of cosmic rays, as this emission is expected to originate in hadronic interactions taking place in or near cosmic-ray accelerators. No neutrino point sources, or significant correlation with known astrophysical objects, have been identified in the IceCube data so far. The hadronic interactions responsible for the neutrino emission should also lead to the production of high-energy gamma rays. The search for neutrino sources can then be performed by studying the spatial and temporal correlations between neutrino events and very high energy (VHE, E > 100 GeV) gamma rays. We report here on the search for VHE gamma-ray emission with the H.E.S.S. imaging air Cherenkov telescopes (IACTs) at the reconstructed position of muon neutrino events detected by IceCube. We will provide an up-to-date summary of the extensive program to perform prompt IACT observations of realtime IceCube neutrino event positions. A recent highlight of this program are the H.E.S.S. observations during the broad multi-wavelength campaign that followed the detection of the neutrino event IceCube-170922A arriving from a direction consistent with the location of a flaring gamma-ray blazar TXS 0506+056 in September 2017. Well present the H.E.S.S. observations obtained within ~4h hours of the neutrino detection as well as a complementary search for gamma-ray emission at longer timescales and put them into the multi-wavelength and multi-messenger context.



rate research

Read More

The IceCube neutrino discovery presents an opportunity to answer long-standing questions in high-energy astrophysics. For their own sake and relations to other processes, it is important to understand neutrinos arising from the Milky Way, which should have an accompanying flux of gamma rays. Examining Fermi TeV data, and applying other constraints up to >1 PeV, it appears implausible that the Galactic fraction of the IceCube flux is large, though could be present at some level. We address Sgr A*, where the TeV-PeV neutrinos may outrun gamma rays due to gamma-gamma opacity, and further implications, including dark matter and cosmic-ray electrons.
76 - Cosmin Deaconu 2019
The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment flies an interferometric radio array over Antarctica with a primary goal of detecting impulsive Askaryan radio emission from ultra-high-energy neutrinos interacting in the ice sheet. The third and fourth ANITA flights were completed in January 2015 and December 2016, respectively, obtaining the most stringent limits on the diffuse ultra-high-energy neutrino flux above 10$^{19.5}$ eV to date. We also discuss ongoing analyses and the proposed Payload for Ultrahigh Energy Observations (PUEO), the successor to the ANITA program. PUEOs larger number of antennas and improved trigger would significantly improve sensitivity compared to ANITA-IV.
350 - Guenter Sigl 2012
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including secondary neutral particles and in particular neutrinos. The most important open questions are related to the mass composition and sky distributions of these particles as well as on the location and nature of their sources. High energy neutrinos at GeV energies and above from extra-terrestrial sources have not yet been detected and experimental upper limits start to put strong contraints on the sources and the acceleration mechanism of very high energy cosmic rays.
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR anisotropy region detected by Pierre Auger Observatory. The nearby starburst galaxy (SBG), NGC 4945, is close to this anisotropic region and inside the mean angular error of the IC35 event. Considering the hypernovae contribution located in the SB region of NGC 4945, which can accelerate protons up to $sim 10^{17} , {rm eV}$ and inject them into the interstellar medium, we investigate the origin of this event around this starburst galaxy. We show that the interaction of these protons with the SB regions gas density could explain Fermi-LAT gamma-ray and radio observations if the magnetic fields strength in the SB region is the order of $sim rm mG$. Our estimated PeV neutrino events, in ten years, for this source is approximately 0.01 ($4times10^{-4}$) if a proton spectral index of 2.4 (2.7) is considered, which would demonstrate that IC35 is not produced in the central region of this SBG. Additionally, we consider the superwind region of NGC 4945 and show that protons can hardly be accelerated in it up to UHEs.
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energies E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا