Do you want to publish a course? Click here

The Airy distribution: experiment, large deviations and additional statistics

165   0   0.0 ( 0 )
 Added by Baruch Meerson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Airy distribution (AD) describes the probability distribution of the area under a Brownian excursion. The AD is prominent in several areas of physics, mathematics and computer science. Here we use a dilute colloidal system to directly measure, for the first time, the AD in experiment. We also show how two different techniques of theory of large deviations - the Donsker-Varadhan formalism and the optimal fluctuation method - manifest themselves in the AD. We advance the theory of the AD by calculating, at large and small areas, the position distribution of a Brownian excursion conditioned on a given area, and measure its mean in the experiment. For large areas, we uncover two singularities in the large deviation function, which can be interpreted as dynamical phase transitions of third order. For small areas the position distribution coincides with the Ferrari-Spohn distribution, and we identify the reason for this coincidence.



rate research

Read More

For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We determine the conditioned large deviation function of density by a microscopic calculation. We then show that it can be expressed in terms of the solutions of Hamilton-Jacobi equations, which can be written for general diffusive systems using a fluctuating hydrodynamics description.
We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Markov process and Langevin dynamics are derived as limiting cases. We show how conditioning on a value of $Q_T$ modifies the dynamics. For a Langevin dynamics with weak noise, we introduce conditioned large deviations functions and calculate them using either a WKB method or a variational formulation. This allows us, in particular, to calculate the typical trajectory and the fluctuations around this optimal trajectory when conditioned on a certain value of $Q_T$.
69 - Didier Sornette 1998
Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major theme is that risk, usually thought one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramer for large deviations in this context. We first treat a simple model with a single risky asset that examplifies the distinction between the average return and the typical return, the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe reasonably well daily price variations. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.
We study the large deviations statistics of the intensive work done by changing globally a control parameter in a thermally isolated quantum many-body system. We show that, upon approaching a critical point, large deviations well below the mean work display universal features related to the critical Casimir effect in the corresponding classical system. Large deviations well above the mean are, instead, of quantum nature and not captured by the quantum-to-classical correspondence. For a bosonic system we show that in this latter regime a transition from exponential to power-law statistics, analogous to the equilibrium Bose-Einstein condensation, may occur depending on the parameters of the quench and on the spatial dimensionality.
342 - Stephen Whitelam 2017
We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative, or when its basic timescale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change of shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition, but do not necessarily do so.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا