Do you want to publish a course? Click here

Electroweak-QCD interference in hadronic vector bosons at LHC

148   0   0.0 ( 0 )
 Added by William John Murray
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The analysis of hadronic vector boson decays at LHC does not normally allow for interference with QCD production. These effects are studied here using the Sherpa package and can move by several GeV/c 2 the peak positions experiments would reconstruct. However, their impact depends strongly on the kinematics involved. The shifts expected in boosted W and Z bosons, which have been the subject of experimental study, are explored for the first time. The effects in the channels examined are all very small or negligible, but this may not true if lower transverse momenta are analysed, for example in the experimental trigger systems.



rate research

Read More

We analyse diffractive electroweak vector boson production in hadronic collisions and show that the single diffractive W boson production asymmetry in rapidity is a particularly good observable at the LHC to test the concept of the flavour symmetric pomeron parton distributions. It may also provide an additional constraint for the parton distribution functions in the proton.
143 - R. Bonciani , T. Jezo , M. Klasen 2015
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and $Z$ total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
The measurement of polarization fractions of massive gauge bosons at the LHC provides an important check of the Standard Model and in particular of the Electroweak Symmetry Breaking mechanism. Owing to the unstable character of $text{W}$ and $text{Z}$ bosons, devising a theoretical definition for polarized signals is not straightforward and always subject to some ambiguity. Focusing on $text{W}$-boson pair production at the LHC in the fully leptonic channel, we propose to compute polarized cross-sections and distributions based on the gauge-invariant doubly-resonant part of the amplitude. We include NLO QCD corrections to the leading quark-induced partonic process and also consider the loop-induced gluon-initiated process contributing to the same final state. We present results for both an inclusive setup and a realistic fiducial region, with special focus on variables that are suited for the discrimination of polarized cross-sections and on quantities that can be measured experimentally.
To match the precision of present and future measurements of W-boson production at hadron colliders electroweak radiative corrections must be included in the theory predictions. In this paper we consider their effect on the transverse momentum (p_T) distribution of W bosons, with emphasis on large p_T. We evaluate the full electroweak O(alpha) corrections to the processes pp -> W+jet and pbar p -> W+jet including virtual and real photonic contributions. We present the explicit expressions in analytical form for the virtual corrections and provide results for the real corrections, discussing in detail the treatment of soft and collinear singularities. We also provide compact approximate expressions which are valid in the high-energy region, where the electroweak corrections are strongly enhanced by logarithms of hat{s}/M_W^2. These expressions describe the complete asymptotic behaviour at one loop as well as the leading and next-to-leading logarithms at two loops. Numerical results are presented for proton-proton collisions at 14 TeV and proton-antiproton collisions at 2 TeV. The corrections are negative and their size increases with p_T. At the LHC, where transverse momenta of 2 TeV or more can be reached, the one- and two-loop corrections amount up to -40% and +10%, respectively, and will be important for a precise analysis of W production. At the Tevatron, transverse momenta up to 300 GeV are within reach. In this case the electroweak corrections amount up to -10% and are thus larger than the expected statistical error.
Vector-boson scattering (VBS) processes probe the innermost structure of electroweak interactions in the Standard Model, and provide a unique sensitivity for new physics phenomena affecting the gauge sector. In this review, we report on the salient aspects of this class of processes, both from the theory and experimental point of view. We start by discussing recent achievements relevant for their theoretical description, some of which have set important milestones in improving the precision and accuracy of the corresponding simulations. We continue by covering the development of experimental techniques aimed at detecting these rare processes and improving the signal sensitivity over large backgrounds. We then summarise the details of the most relevant VBS signatures and review the related measurements available to date, along with their comparison with Standard-Model predictions. We conclude by discussing the perspective at the upcoming Large Hadron Collider runs and at future hadron facilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا