Do you want to publish a course? Click here

Modelling physical limits of migration by a kinetic model with non-local sensing

61   0   0.0 ( 0 )
 Added by Nadia Loy
 Publication date 2019
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Migrating cells choose their preferential direction of motion in response to different signals and stimuli sensed by spanning their external environment. However, the presence of dense fibrous regions, lack of proper substrate, and cell overcrowding may hamper cells from moving in certain directions or even from sensing beyond regions that practically act like physical barriers. We extend the non-local kinetic model proposed by Loy and Preziosi (2019) to include situations in which the sensing radius is not constant, but depends on position, sensing direction and time as cells behavior might be determined on the basis of information collected before reaching physically limiting configurations. We analyze how the actual possible sensing of the environment influences the dynamics by recovering the appropriate macroscopic limits and by integrating numerically the kinetic transport equation.



rate research

Read More

The aim of the article is to study the stability of a non-local kinetic model proposed by Loy and Preziosi (2019a). We split the population in two subgroups and perform a linear stability analysis. We show that pattern formation results from modulation of one non-dimensional parameter that depends on the tumbling frequency, the sensing radius, the mean speed in a given direction, the uniform configuration density and the tactic response to the cell density. Numerical simulations show that our linear stability analysis predicts quite precisely the ranges of parameters determining instability and pattern formation. We also extend the stability analysis in the case of different mean speeds in different directions. In this case, for parameter values leading to instability travelling wave patterns develop.
Cells move by run and tumble, a kind of dynamics in which the cell alternates runs over straight lines and re-orientations. This erratic motion may be influenced by external factors, like chemicals, nutrients, the extra-cellular matrix, in the sense that the cell measures the external field and elaborates the signal eventually adapting its dynamics. We propose a kinetic transport equation implementing a velocity-jump process in which the transition probability takes into account a double bias, which acts, respectively, on the choice of the direction of motion and of the speed. The double bias depends on two different non-local sensing cues coming from the external environment. We analyze how the size of the cell and the way of sensing the environment with respect to the variation of the external fields affect the cell population dynamics by recovering an appropriate macroscopic limit and directly integrating the kinetic transport equation. A comparison between the solutions of the transport equation and of the proper macroscopic limit is also performed.
We propose a multiscale chemo-mechanical model of cancer tumour development in an epithelial tissue. The model is based on transformation of normal cells into the cancerous state triggered by a local failure of spatial synchronisation of the circadian rhythm. The model includes mechanical interactions and chemical signal exchange between neighbouring cells, as well as division of cells and intercalation, and allows for modification of the respective parameters following transformation into the cancerous state. The numerical simulations reproduce different dephasing patterns - spiral waves and quasistationary clustering, with the latter being conducive to cancer formation. Modification of mechanical properties reproduces distinct behaviour of invasive and localised carcinoma.
415 - E. Moreno , F. Font (1 2020
Eukaryotic cell motility involves a complex network of interactions between biochemical components and mechanical processes. The cell employs this network to polarize and induce shape changes that give rise to membrane protrusions and retractions, ultimately leading to locomotion of the entire cell body. The combination of a nonlinear reaction-diffusion model of cell polarization, noisy bistable kinetics, and a dynamic phase field for the cell shape permits us to capture the key features of this complex system to investigate several motility scenarios, including amoeboid and fan-shaped forms as well as intermediate states with distinct displacement mechanisms. We compare the numerical simulations of our model to live cell imaging experiments of motile {it Dictyostelium discoideum} cells under different developmental conditions. The dominant parameters of the mathematical model that determine the different motility regimes are identified and discussed.
The phenomenological model for cell shape deformation and cell migration (Chen et.al. 2018; Vermolen and Gefen 2012) is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak et.al. (2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا