No Arabic abstract
Ge-Sn alloys with a sufficiently high concentration of Sn is a direct bandgap group IV material. Recently, ion implantation followed by pulsed laser melting has been shown to be a promising method to realize this material due to its high reproducibility and precursor-free process. A Ge-Sn alloy with ~9 at.% Sn was shown to be feasible by this technique. However, the compressive strain, inherently occurring in heterogeneous epitaxy of the film, evidently delays the material from the direct bandgap transition. In this report, an attempt to synthesize a highly-relaxed Ge-Sn alloy will be presented. The idea is to produce a significantly thicker film with a higher implant energy and doses. X-ray reciprocal space mapping confirms that the material is largely-relaxed. The peak Sn concentration of the highest dose sample is 6 at.% as determined by Rutherford backscattering spectrometry. Cross-sectional transmission electron microscopy shows unconventional defects in the film as the mechanism for the strain relaxation. Finally, a photoluminescence (PL) study of the strain-relaxed alloys shows photon emission at a wavelength of 2045 nm, suggesting an active incorporation of Sn concentration of ~6 at.%. The results of this study pave way to produce high quality relaxed GeSn alloy using an industrially scalable method.
Polyynes are finite chains formed by sp-hybridized carbon atoms with alternating single and triple bonds and displaying intriguing electronic and optical properties. Pulsed laser ablation in liquid (PLAL) is a well assessed technique for the physical synthesis of hydrogen-capped polyynes in solution, however, their limited stability prevents further exploitation in materials for different applications. In this work, polyynes in poly(vinyl alcohol) (PVA) were produced in a single-step PLAL process by ablating graphite directly in aqueous solution of PVA, investigating the role of polymer concentration. The presence of PVA solution, as a participating medium for PLAL, is shown to favour the formation of polyynes. The addition of Ag colloids to the aqueous PVA/polyynes solution allowed surface-enhanced Raman spectroscopy (SERS) measurements, carried out both on liquid samples and on free-standing nanocomposites, obtained after solvent evaporation. We show that polyynes in the nanocomposite remain stable at least for 11 months, whereas the corresponding PVA/Ag/polyynes solution displayed a strong polyyne reduction already after 3 weeks. These results open the view to further characterizations of the properties of polyyne-based films and materials.
Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometry. Incorporation of Sn content in the 10-20 at.% range is achieved with Ge core diameters ranging from 50nm to 100nm. While the smaller cores lead to the formation of a regular and homogeneous GeSn shell, larger cores lead to the formation of multi-faceted sidewalls and broadened segregation domains, inducing the nucleation of defects. This behavior is rationalized in terms of the different residual strain, as obtained by realistic finite element method simulations. The extended analysis of the strain relaxation as a function of core and shell sizes, in comparison with the conventional planar geometry, provides a deeper understanding of the role of strain in the epitaxy of metastable GeSn semiconductors.
GeSn alloys are the most promising semiconductors for light emitters entirely based on group IV elements. Alloys containing more than 8 at.% Sn have fundamental direct band-gaps, similar to conventional III-V semiconductors and thus can be employed for light emitting devices. Here, we report on GeSn microdisk lasers encapsulated with a SiNx stressor layer to produce tensile strain. A 300nm GeSn layer with 5.4 at.% Sn, which is an indirect band-gap semiconductor as-grown with a compressive strain of -0.32 %, is transformed via tensile strain engineering into a truly direct band-gap semiconductor. In this approach the low Sn concentration enables improved defect engineering and the tensile strain delivers a low density of states at the valence band edge, which is the light hole band. Continuous wave (cw) as well as pulsed lasing are observed at very low optical pump powers. Lasers with emission wavelength of 2.5 um have thresholds as low as 0.8kWcm^-2 for ns-pulsed excitation, and 1.1kWcm^-2 under cw excitation. These thresholds are more than two orders of magnitude lower than those previously reported for bulk GeSn lasers, approaching these values obtained for III-V lasers on Si. The present results demonstrate the feasabiliy and are the guideline for monolithically integrated Si-based laser sources on Si photonics platform.
Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce materials modifications and phase transitions. Materials properties can potentially be stabilized by rapid quenching. Pulsed ion beams with (sub-) ns pulse lengths have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired materials properties fast enough before the target is altered or damaged by e. g. hydrodynamic expansion. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.
Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is realized with CMOS-compatible nonequilibrium material processing. P is used to form highly doped n-type Ge-Sn layers and to modify the lattice parameter of P-doped Ge-Sn alloys. The strain engineering in heavily-P-doped Ge-Sn films is confirmed by x-ray diffraction and micro Raman spectroscopy. The change of the band gap in P-doped Ge-Sn alloy as a function of P concentration is theoretically predicted by density functional theory and experimentally verified by near-infrared spectroscopic ellipsometry. According to the shift of the absorption edge, it is shown that for an electron concentration greater than 1x10^20 cm-3 the band-gap renormalization is partially compensated by the Burstein-Moss effect. These results indicate that Ge-based materials have high potential for use in near-infrared optoelectronic devices, fully compatible with CMOS technology.