Do you want to publish a course? Click here

Galerkin-collocation approximation in time for the wave equation and its post-processing

110   0   0.0 ( 0 )
 Added by Markus Bause
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce and analyze a class of Galerkin-collocation discretization schemes in time for the wave equation. Its conceptual basis is the establishment of a direct connection between the Galerkin method for the time discretization and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs provided by the latter in terms of less complex linear algebraic systems. Continuously differentiable in time discrete solutions are obtained by the application of a special quadrature rule involving derivatives. Optimal order error estimates are proved for fully discrete approximations based on the Galerkin-collocation approach. Further, the concept of Galerkin-collocation approximation is extended to twice continuously differentiable in time discrete solutions. A direct connection between the two families by a computationally cheap post-processing is presented. The error estimates are illustrated by numerical experiments.



rate research

Read More

We propose and study numerically the implicit approximation in time of the Navier-Stokes equations by a Galerkin-collocation method in time combined with inf-sup stable finite element methods in space. The conceptual basis of the Galerkin-collocation approach is the establishment of a direct connection between the Galerkin method and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs in terms of less complex algebraic systems of the latter. Regularity of higher order in time of the discrete solution is ensured further. As an additional ingredient, we employ Nitsches method to impose all boundary conditions in weak form with the perspective that evolving domains become feasible in the future. We carefully compare the performance poroperties of the Galerkin-collocation approach with a standard continuous Galerkin-Petrov method using piecewise linear polynomials in time, that is algebraically equivalent to the popular Crank-Nicholson scheme. The condition number of the arising linear systems after Newton linearization as well as the reliable approximation of the drag and lift coefficient for laminar flow around a cylinder (DFG flow benchmark with $Re=100$) are investigated. The superiority of the Galerkin-collocation approach over the linear in time, continuous Galerkin-Petrov method is demonstrated therein.
121 - David Cohen , Annika Lang 2021
Solutions to the stochastic wave equation on the unit sphere are approximated by spectral methods. Strong, weak, and almost sure convergence rates for the proposed numerical schemes are provided and shown to depend only on the smoothness of the driving noise and the initial conditions. Numerical experiments confirm the theoretical rates. The developed numerical method is extended to stochastic wave equations on higher-dimensional spheres and to the free stochastic Schrodinger equation on the unit sphere.
In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navier equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit and also to the local limit as nonlocal interactions vanish. The stability is shown by comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. We then apply the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume the Lam{e} parameters satisfy $lambda geq mu$ to avoid adding extra constraints on the nonlocal kernel. Finally, numerical experiments are conducted to validate the theoretical results.
A general adaptive refinement strategy for solving linear elliptic partial differential equation with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile in 2018 (SIAM J. Numer. Anal., 56, 3121--3143) to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in this paper (part I). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, will be discussed in part II of this work. The codes used to generate the numerical results are available online.
In this note we develop a fully explicit cut finite element method for the wave equation. The method is based on using a standard leap frog scheme combined with an extension operator that defines the nodal values outside of the domain in terms of the nodal values inside the domain. We show that the mass matrix associated with the extended finite element space can be lumped leading to a fully explicit scheme. We derive stability estimates for the method and provide optimal order a priori error estimates. Finally, we present some illustrating numerical examples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا