Do you want to publish a course? Click here

New magicity $N=32$ and $34$ triggered by strong couplings between Dirac inversion partners

119   0   0.0 ( 0 )
 Added by Wen Hui Long
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Inspired by recent experiments, the successive new magicity $N = 32$ and $34$ in Ca isotopes are studied within the relativistic density functional theory. It is illustrated that the strong couplings between the $s_{1/2}$ and neutron ($ u$) $ u2p_{1/2}$ orbits, here referred as Dirac inversion partners (DIPs), play a key role in opening both subshells $N = 32$ and $34$. Such strong couplings originate from the inversion similarity between the DIPs, that the upper component of the Dirac spinor of one partner shares the same orbital angular momentum as the lower component of the other, and vice versa. Following the revealed mechanism, it is predicted that the magicity $N = 32$ is reserved until $^{48}$S, but vanishes in $^{46}$Si.



rate research

Read More

Restoration of pseudo-spin symmetry (PSS) along the $N=32$ and $34$ isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with effective Lagrangian PKA1. Taking the proton pseudo-spin partners $(pi2s_{1/2},pi1d_{3/2})$ as candidates, systematic restoration of PSS along both isotonic chains is found from sulphur (S) to nickel (Ni), while distinct violation from silicon (Si) to sulphur is discovered near the drip lines. The effects of the tensor-force components introduced naturally by the Fock terms are investigated, which can only partly interpret the systematics from calcium to nickel, but fail for the overall trends. Further analysis following the Schr{o}dinger-like equation of the lower component of Dirac spinor shows that the contributions from the Hartree terms dominate the overall systematics of the PSS restoration, and such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. Specifically the distinct PSS violation is found to tightly relate with the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.
We report high-precision mass measurements of $^{50-55}$Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for $^{53-55}$Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers $N=32$ and $N=34$ above proton-magic $Z=20$. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the $N=32$ isotone, confirming that the empirical neutron shell gap energies peak at the doubly-magic $^{52}$Ca. Moreover, our data, combined with other recent measurements, does not support the existence of closed neutron shell in $^{55}$Sc at $N=34$. The results were compared to predictions from both emph{ab initio} and phenomenological nuclear theories, which all had success describing $N=32$ neutron shell gap energies but were highly disparate in the description of the $N=34$ isotone.
The large energy-scale behaviour of the parity and time-reversal violating (PTV) pion-nucleon coupling constant is analyzed in a model combining renormalization-group techniques and the dressing of the PTV vertex with a pion loop. With the strong $pi N N$ vertex as a mixture of the pseudovector and pseudoscalar couplings, we show that depending on the admixture parameter, two qualitatively distinct types of behaviour are obtained for the PTV coupling constant at high energy scales: an asymptotic freedom or a fixed-point. We find a critical value of the admixture parameter which delineates these two scenarios. Several examples of the high-energy scale behaviour of the PTV $pi N N$ constant are considered, corresponding to realistic hadronic models of the strong pion-nucleon interaction.
A second-order supersymmetric transformation is presented, for the two-channel Schrodinger equation with equal thresholds. It adds a Breit-Wigner term to the mixing parameter, without modifying the eigenphase shifts, and modifies the potential matrix analytically. The iteration of a few such transformations allows a precise fit of realistic mixing parameters in terms of a Pade expansion of both the scattering matrix and the effective-range function. The method is applied to build an exactly-solvable potential for the neutron-proton $^3S_1$-$^3D_1$ case.
We compute couplings between the $rho$-meson and $D$- and $D^ast$-mesons - $D^{(ast)}rho D^{(ast)}$ - that are relevant to phenomenological meson-exchange models used to analyse nucleon-$D$-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a consistent, simultaneous description of light- and heavy-quarks and the states they constitute, We find that all interactions, including the three independent $D^{ast} rho ,D^{ast}$ couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with $rho$-meson virtuality. As a consequence, it appears that no single coupling strength or parametrization can realistically be employed in the study of interactions between $D^{(ast)}$-mesons and matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا