Do you want to publish a course? Click here

MuSHR: A Low-Cost, Open-Source Robotic Racecar for Education and Research

140   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present MuSHR, the Multi-agent System for non-Holonomic Racing. MuSHR is a low-cost, open-source robotic racecar platform for education and research, developed by the Personal Robotics Lab in the Paul G. Allen School of Computer Science & Engineering at the University of Washington. MuSHR aspires to contribute towards democratizing the field of robotics as a low-cost platform that can be built and deployed by following detailed, open documentation and do-it-yourself tutorials. A set of demos and lab assignments developed for the Mobile Robots course at the University of Washington provide guided, hands-on experience with the platform, and milestones for further development. MuSHR is a valuable asset for academic research labs, robotics instructors, and robotics enthusiasts.



rate research

Read More

Current robot platforms available for research are either very expensive or unable to handle the abuse of exploratory controls in reinforcement learning. We develop RealAnt, a minimal low-cost physical version of the popular Ant benchmark used in reinforcement learning. RealAnt costs only $410 in materials and can be assembled in less than an hour. We validate the platform with reinforcement learning experiments and provide baseline results on a set of benchmark tasks. We demonstrate that the TD3 algorithm can learn to walk the RealAnt from less than 45 minutes of experience. We also provide simulato
Standardized evaluation measures have aided in the progress of machine learning approaches in disciplines such as computer vision and machine translation. In this paper, we make the case that robotic learning would also benefit from benchmarking, and present the REPLAB platform for benchmarking vision-based manipulation tasks. REPLAB is a reproducible and self-contained hardware stack (robot arm, camera, and workspace) that costs about 2000 USD, occupies a cuboid of size 70x40x60 cm, and permits full assembly within a few hours. Through this low-cost, compact design, REPLAB aims to drive wide participation by lowering the barrier to entry into robotics and to enable easy scaling to many robots. We envision REPLAB as a framework for reproducible research across manipulation tasks, and as a step in this direction, we define a template for a grasping benchmark consisting of a task definition, evaluation protocol, performance measures, and a dataset of 92k grasp attempts. We implement, evaluate, and analyze several previously proposed grasping approaches to establish baselines for this benchmark. Finally, we also implement and evaluate a deep reinforcement learning approach for 3D reaching tasks on our REPLAB platform. Project page with assembly instructions, code, and videos: https://goo.gl/5F9dP4.
Many have explored the application of continuum robot manipulators for minimally invasive surgery, and have successfully demonstrated the advantages their flexible design provides -- with some solutions having reached commercialisation and clinical practice. However, the usual high complexity and closed-nature of such designs has traditionally restricted the shared development of continuum robots across the research area, thus impacting further progress and the solution of open challenges. In order to close this gap, this paper introduces ENDO, an open-source 3-segment continuum robot manipulator with control and actuation mechanism, whose focus is on simplicity, affordability, and accessibility. This robotic system is fabricated from low cost off-the-shelf components and rapid prototyping methods, and its information for implementation (and that of future iterations), including CAD files and source code, is available to the public on the Open Source Medical Robots initiatives repository on GitHub (https://github.com/OpenSourceMedicalRobots), with the control library also available directly from Arduino. Herein, we present details of the robot design and control, validate functionality by experimentally evaluating its workspace, and discuss possible paths for future development.
High performance lidars are essential in autonomous robots such as self-driving cars, automated ground vehicles and intelligent machines. Traditional mechanical scanning lidars offer superior performance in autonomous vehicles, but the potential mass application is limited by the inherent manufacturing difficulty. We propose a robotic lidar sensor based on incommensurable scanning that allows straightforward mass production and adoption in autonomous robots. Some unique features are additionally permitted by this incommensurable scanning. Similar to the fovea in human retina, this lidar features a peaked central angular density, enabling in applications that prefers eye-like attention. The incommensurable scanning method of this lidar could also provide a much higher resolution than conventional lidars which is beneficial in robotic applications such as sensor calibration. Examples making use of these advantageous features are demonstrated.
The ongoing surge in applications of robotics brings both opportunities and challenges for the fifth-generation (5G) and beyond (B5G) of communication networks. This article focuses on 5G/B5G-enabled terrestrial robotic communications with an emphasis on distinct characteristics of such communications. Firstly, signal and spatial modeling for robotic communications are presented. To elaborate further, both the benefits and challenges derived from robots mobility are discussed. As a further advance, a novel simultaneous localization and radio mapping (SLARM) framework is proposed for integrating localization and communications into robotic networks. Furthermore, dynamic trajectory design and resource allocation for both indoor and outdoor robots are provided to verify the performance of robotic communications in the context of typical robotic application scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا