Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures


Abstract in English

Spin-orbit coupling stands as a powerful tool to interconvert charge and spin currents and to manipulate the magnetization of magnetic materials through the spin torque phenomena. However, despite the diversity of existing bulk materials and the recent advent of interfacial and low-dimensional effects, control of the interconvertion at room-temperature remains elusive. Here, we unequivocally demonstrate strongly enhanced room-temperature spin-to-charge (StC) conversion in graphene driven by the proximity of a semiconducting transition metal dichalcogenide(WS2). By performing spin precession experiments in properly designed Hall bars, we separate the contributions of the spin Hall and the spin galvanic effects. Remarkably, their corresponding conversion effiencies can be tailored by electrostatic gating in magnitude and sign, peaking nearby the charge neutrality point with a magnitude that is comparable to the largest efficiencies reported to date. Such an unprecedented electric-field tunability provides a new building block for spin generation free from magnetic materials and for ultra-compact magnetic memory technologies.

Download