No Arabic abstract
We present an analysis of the XMM-Newton observations of the symbiotic recurrent nova T CrB, obtained during its active phase that started in 2015. The XMM-Newton spectra of T CrB have two prominent components: a soft one (0.2 - 0.6 keV), well represented by black-body emission, and a heavily absorbed hard component (2 - 10 keV), well matched by optically-thin plasma emission with high temperature (kT ~ 8 keV). The XMM-Newton observations reveal evolution of the X-ray emission from T CrB in its active phase. Namely, the soft component in its spectrum is decreasing with time while the opposite is true for the hard component. Comparison with data obtained in the quiescent phase shows that the soft component is typical only for the active phase, while the hard component is present in both phases but it is considerably stronger in the quiescent phase. Presence of stochastic variability (flickering) on time-scales of minutes and hours is confirmed both in X-rays and UV (UVM2 filter of the XMM-Newton optical monitor). On the other hand, periodic variability of 6000-6500 s is found for the first time in the soft X-ray emission (0.2 - 0.6 keV) from T CrB. We associate this periodic variability with the rotational period of the white dwarf in this symbiotic binary.
T CrB is a symbiotic recurrent nova known to exhibit active phases, characterised by apparent increases in the hot component temperature and the appearance of flickering, i.e. changes in the observed flux on the time-scale of minutes. Historical UV observations have ruled out orbital variability as an explanation for flickering and instead suggest flickering is caused by variable mass transfer. We have analysed optical and X-ray observations to investigate the nature of the flickering as well as the active phases in T CrB. The spectroscopic and photometric observations confirm that the active phases follow two periods of ~1000d and ~5000d. Flickering in the X-rays is detected and follows an amplitude-flux relationship similar to that observed in the optical. The flickering is most prominent at harder X-ray energies, suggesting that it originates in the boundary layer between the accretion disc and the white dwarf. The X-ray radiation from the boundary layer is then reprocessed by a thick accretion disc or a nebula into UV radiation. A more detailed understanding of flickering would benefit from long-term simultaneous X-ray and optical monitoring of the phenomena in symbiotic recurrent novae and related systems such as Z And type symbiotic stars.
Two XMM observations of the fast classical nova V2491Cyg were carried out on days 39.93 and 49.62 after discovery, during the supersoft source (SSS) phase, yielding simultaneous X-ray and UV light curves and high-resolution X-ray spectra. The first X-ray light curve is highly variable with periodic oscillations (37.2 min) after an extended dip of factor of three lasting ~3 hours. The cause of the dip is currently unexplained and could have the same origin as similar events in V4743Sgr and RSOph, as it occurred on the same time scale. The 37-min period is not present during the dip and also not in the second observation. The UV light curves are variable but contain no dips and no period. High-resolution X-ray spectra are presented for 4 intervals of different intensity. All spectra are atmospheric continua with absorption lines and absorption edges. Interstellar lines of OI and NI are seen at their rest wavelengths, and a large number of high-ionization absorption lines are found at blue shifts indicating an expansion velocity of 3000-3400 km/s, which does not change significantly during the epochs of observation. Comparisons with the slower nova V4743Sgr and the symbiotic recurrent nova RSOph are presented. The SSS spectrum of V4743Sgr is much softer with broader and more complex photospheric absorption lines. Meanwhile, the absorption lines in RSOph are as narrow as in V2491Cyg, but they are less blue shifted. A remarkable similarity in the continua of V2491Cyg and RSOph is found. The only differences are smaller line shifts and additional emission lines in RSOph that are related to a dense stellar wind from the evolved companion. Three unidentified absorption lines are present in the X-ray spectra of all three novae, with rest wavelengths 26.05AA, 29.45AA, and 30.0AA. No satisfactory spectral model is currently available for the soft X-ray spectra of novae in outburst.
Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the Symbiotic Recurrent Nova, V3890 Sgr. The first observing run, 8.1-9.9 days after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of Super Soft Source (SSS) emission powered by residual burning on the surface of the White Dwarf. The SSS emission was observed to be highly variable on time scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9-19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8-17.8 followed by re-brightening. Meanwhile the shock component was stable leading to increase in hardness ratio during the period of fading. AstroSat and XMM-Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model-dependence. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra >1 keV. The SSS emission is well fit by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.
We obtained radio observations of the symbiotic binary and known recurrent nova T Coronae Borealis following a period of increased activity in the optical and X-ray bands. A comparison of our observations with those made prior to 2015 indicates that the system is in a state of higher emission in the radio as well. The spectral energy distributions are consistent with optically thick thermal bremsstrahlung emission from a photoionized source. Our observations indicate that the system was in a state of increased ionization in the companion wind, possibly driven by an increase in accretion rate, with the radio photosphere located well outside the binary system.
We present Suzaku X-ray observations of the recurrent nova T CrB in quiescence. T CrB is the first recurrent nova to be detected in the hard-X-ray band (E ~ 40.0 keV) during quiescence. The X-ray spectrum is consistent with cooling-flow emission emanating from an optically thin region in the boundary layer of an accretion disk around the white dwarf. The detection of strong stochastic flux variations in the light curve supports the interpretation of the hard X-ray emission as emanating from a boundary layer.