Dependable predictions of the X-ray burst ashes and light curves require a stringent constraint on the composition of the accreted material as an input parameter. Lower metallicity models are generally based on a metal deficient donor and all metals are summed up in CNO abundances or solar metal distribution is assumed. In this work, we study the alteration of accreted composition due to spallation in the atmosphere of accreting neutron stars considering a cascading destruction process. We find that the inclusion of the cascading process brings the replenishment of CNO elements and overall survival probability is higher compared to isolated destruction of CNO elements. Spallation model provides the distribution of metals as a function of mass accretion rate. Multi-zone X-ray burst models calculated with reduced metallicities have enhanced abundances for high-mass nuclei in X-ray burst ashes. The increased metallicity due to the replenishment of CNO elements changes the composition of burst ashes compared to lower metallicity conditions. This will modify the thermal and compositional structure of accreted neutron star crusts.
Hotspots on the surface of accreting neutron stars have been directly observed via pulsations in the lightcurves of X-ray pulsars. They are thought to occur due to magnetic channelling of the accreted fuel to the neutron star magnetic poles. Some X-ray pulsars exhibit burst oscillations during Type I thermonuclear X-ray bursts which are thought to be caused by asymmetries in the burning. In rapidly rotating neutron stars, it has been shown that the lower gravity at the equator can lead to preferential ignition of X-ray bursts at this location. These models, however, do not include the effect of accretion hotspots at the neutron star surface. There are two accreting neutron star sources in which burst oscillations have been observed to track exactly the neutron star spin period. We analyse whether this could be due to the X-ray bursts igniting at the magnetic pole of the neutron star, because of heating in the accreted layers under the hotspot causing ignition conditions to be reached earlier. We investigate heat transport in the accreted layers using a 2D model and study the prevalence of heating down to the ignition depth of X-ray bursts for different hotspot temperatures and sizes. We perform calculations for accretion at the pole and at the equator, and infer that ignition could occur away from the equator at the magnetic pole for hotspots with temperatures greater than $1times10^8$ K. However, current observations have not identified such high temperatures in accreting X-ray pulsars.
We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the persistent AMXPs SAX J1808.4-3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other two persistent pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the distance of 6.9 kpc. We discuss the implications of our results for models of the burst oscillation mechanism.
Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the neutron star interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor (GBM) aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09, when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12+/-3 d (68% confidence interval) between March 2010 and March 2011, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 d (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations, and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias towards detecting only the longest and most energetic bursts from slowly accreting NSs.
Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experimental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
We report on a spectroscopic analysis of the X-ray emission from IGR J17062-6143 in the aftermath of its June 2020 intermediate duration Type I X-ray burst. Using the Neutron Star Interior Composition Explorer, we started observing the source three hours after the burst was detected with MAXI/GSC, and monitored the source for the subsequent twelve days. We observed the tail end of the X-ray burst cooling phase, and find that the X-ray flux is severely depressed relative to its historic value for a three day period directly following the burst. We interpret this intensity dip as the inner accretion disk gradually restoring itself after being perturbed by the burst irradiation. Superimposed on this trend we observed a $1.5$ d interval during which the X-ray flux is sharply lower than the wider trend. This drop in flux could be isolated to the non-thermal components in the energy spectrum, suggesting that it may be caused by an evolving corona. Additionally, we detected a 3.4 keV absorption line at $6.3sigma$ significance in a single $472$ s observation while the burst emission was still bright. We tentatively identify the line as a gravitationally redshifted absorption line from burning ashes on the stellar surface, possibly associated with ${}^{40}{rm Ca}$ or ${}^{44}{rm Ti}$.
J. S. Randhawa
,Z. Meisel
,S. A. Giuliani
.
(2019)
.
"Spallation-altered accreted compositions for X-ray bursts: Impact on ignition conditions and burst ashes"
.
Jaspreet Singh Randhawa
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا