Do you want to publish a course? Click here

Looking for interactions in the cosmological dark sector

53   0   0.0 ( 0 )
 Added by Micol Benetti Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study observational signatures of non-gravitational interactions between the dark components of the cosmic fluid, which can be either due to creation of dark particles from the expanding vacuum or an effect of the clustering of a dynamical dark energy. In particular, we analyse a class of interacting models ($Lambda$(t)CDM), characterised by the parameter $alpha$, that behaves at background level like cold matter at early times and tends to a cosmological constant in the asymptotic future. In our analysis we consider both background and primordial perturbations evolutions of the model. We use Cosmic Microwave Background (CMB) data together with late time observations, such as the Joint Light-curve Analysis (JLA) supernovae data, the Hubble Space Telescope (HST) measurement of the local value of the Hubble-Lema^itre parameter, and primordial deuterium abundance from Ly$alpha$ systems to test the observational viability of the model and some of its extensions. We found that there is no preference for values of $alpha$ different from zero (characterising interaction), even if there are some indications for positive values when the minimal $Lambda$(t)CDM model is analysed. When extra degrees of freedom in the relativistic component of the cosmic fluid are considered, the data favour negative values of $alpha$, which means an energy flux from dark energy to dark matter.



rate research

Read More

Since there is no known symmetry in Nature that prevents a non-minimal coupling between the dark energy (DE) and cold dark matter (CDM) components, such a possibility constitutes an alternative to standard cosmology, with its theoretical and observational consequences being of great interest. In this paper we propose a new null test on the standard evolution of the dark sector based on the time dependence of the ratio between the CDM and DE energy densities which, in the standard $Lambda$CDM scenario, scales necessarily as $a^{-3}$. We use the latest measurements of type Ia supernovae, cosmic chronometers and angular baryonic acoustic oscillations to reconstruct the expansion history using model-independent Machine Learning techniques, namely, the Linear Model formalism and Gaussian Processes. We find that while the standard evolution is consistent with the data at $3sigma$ level, some deviations from the $Lambda$CDM model are found at low redshifts, which may be associated with the current tension between local and global determinations of $H_0$.
187 - Rong-Gen Cai , Qiping Su 2009
It is possible that there exist some interactions between dark energy (DE) and dark matter (DM), and a suitable interaction can alleviate the coincidence problem. Several phenomenological interacting forms are proposed and are fitted with observations in the literature. In this paper we investigate the possible interaction in a way independent of specific interacting forms by use of observational data (SNe, BAO, CMB and Hubble parameter). We divide the whole range of redshift into a few bins and set the interacting term $delta(z)$ to be a constant in each redshift bin. We consider four parameterizations of the equation of state $w_{de}$ for DE and find that $delta(z)$ is likely to cross the non-interacting ($delta=0$) and have an oscillation form. It suggests that to study the interaction between DE and DM, more general phenomenological forms of the interacting term should be considered.
We explore the model-independent constraints from cosmology on a dark-matter particle with no prominent standard model interactions that interacts and thermalizes with other particles in a hidden sector. Without specifying detailed hidden-sector particle physics, we characterize the relevant physics by the annihilation cross section, mass, and temperature ratio of the hidden to visible sectors. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be nonrelativistic. Rather, freeze-out may also occur when dark matter particles are semirelativistic or relativistic. We solve the Boltzmann equation to find the conditions that hidden-sector dark matter accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density, and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. We show that for masses <1.5 keV no region of parameter space satisfies all these constraints. This is a gravitationally-mediated lower bound on the dark-matter mass for any model in which the primary component of dark matter once had efficient interactions -- even if it has never been in equilibrium with the standard model.
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid description. For inverse power law potentials and linear interaction function, we show that the interacting dark sector model is consistent with $textit{four cosmological data sets}$ -- Hubble parameter measurements (Hz), Baryonic Acoustic Oscillation data (BAO), Supernova Type Ia data (SN), and High redshift HII galaxy measurements (HIIG). More specifically, these data sets prefer a negative value of interaction strength in the dark sector and lead to the best-fit value of Hubble constant $H_0 = 69.9^{0.46}_{1.02}$ km s$^{-1}$ Mpc$^{-1}$. Thus, the interacting field theory model $textit{alleviates the Hubble tension}$ between Planck and these four cosmological probes. Having established that this interacting field theory model is consistent with cosmological observations, we obtain quantifying tools to distinguish between the interacting and non-interacting dark sector scenarios. We focus on the variation of the scalar metric perturbed quantities as a function of redshift related to structure formation, weak gravitational lensing, and the integrated Sachs-Wolfe effect. We show that the difference in the evolution becomes significant for $z < 20$, for all length scales, and the difference peaks at smaller redshift values $z < 5$. We then discuss the implications of our results for the upcoming missions.
We study a two-parameter extension of the cosmological standard model $Lambda$CDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid $Delta N_mathrm{fluid}$ and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak dark matter drag which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of $sigma_8$. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the $chi$-squared relative to $Lambda$CDM by about 12, corresponding to a preference for non-zero dark matter drag by more than $3 sigma$. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا