Do you want to publish a course? Click here

Measurements of Nonequilibrium Interatomic Forces in Photoexcited Bismuth

68   0   0.0 ( 0 )
 Added by Samuel Teitelbaum
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine experimentally the excited-state interatomic forces in photoexcited bismuth. The forces are obtained by a constrained least-squares fit of the excited-state dispersion obtained by femtosecond time-resolved x-ray diffuse scattering to a fifteen-nearest neighbor Born-von Karman model. We find that the observed softening of the zone-center $A_{1g}$ optical mode and transverse acoustic modes with photoexcitation are primarily due to a weakening of three nearest neighbor forces along the bonding direction. This provides a more complete picture of what drives the partial reversal of the Peierls distortion previously observed in photoexcited bismuth.



rate research

Read More

213 - B. Arnaud , Y. Giret 2012
By means of first principles calculations, we computed the effective electron-phonon coupling constant $G_0$ governing the electron cooling in photoexcited bismuth. $G_0$ strongly increases as a function of electron temperature, which can be traced back to the semi-metallic nature of bismuth. We also used a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulated the time evolution of (1 -1 0), (-2 1 1) and (2 -2 0) Bragg peak intensities measured by Sciaini et al [Nature 458, 56 (2009)] in femtosecond electron diffraction experiments. The effect of the electron temperature on the Debye-Waller factors through the softening of all optical modes across the whole Brillouin zone turns out to be crucial to reproduce the time evolution of these Bragg peak intensities.
We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The binding energy of bulk-like bands oscillates with the frequency of the $A_{1g}$ phonon mode whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wavevector is correctly reproduced by textit{ab initio} calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.
}We present a formalism for extending the second moment tight-binding model, incorporating ferro- and anti-ferromagn etic interaction terms which are needed for the FeCr system. For antiferromagnetic and paramagnetic materials, an explicit additional variable representing the spin is required. In a mean-field approximation this spin can be eliminated, and the potential becomes explicitly temperature dependent. For ferromagnetic interactions, this degree of freedom can be eliminated, and the formalism reduces to the embedded atom method (EAM) and we show the equivale nce of existing EAM potentials to magnetic potentials.
We investigate the ultrafast response of the bismuth (111) surface by means of time resolved photoemission spectroscopy. The direct visualization of the electronic structure allows us to gain insights on electron-electron and electron-phonon interaction. Concerning electron-electron interaction, it is found that electron thermalization is fluence dependent and can take as much as several hundreds of femtoseconds at low fluences. This behavior is in qualitative agreement with Landaus theory of Fermi liquids but the data show deviations from the behavior of a common 3D degenerate electron gas. Concerning electron-phonon interaction, our data allows us to directly observe the coupling of individual Bloch state to the coherent $A_{1g}$ mode. It is found that surface states are much less coupled to this mode when compared to bulk states. This is confirmed by textit{ab initio} calculations of surface and bulk bismuth.
137 - Y. M. Sheu , Y. J. Chien , C. Uher 2012
We report ultrafast surface pump and interface probe experiments on photoexcited carrier transport across single crystal bismuth films on sapphire. The film thickness is sufficient to separate carrier dynamics from lattice heating and strain, allowing us to investigate the time-scales of momentum relaxation, heat transfer to the lattice and electron-hole recombination. The measured electron-hole ($e-h$) recombination time is 12--26 ps and ambipolar diffusivity is 18--40 cm$^{2}$/s for carrier excitation up to $sim 10^{19} text{cm}^{-3}$. By comparing the heating of the front and back sides of the film, we put lower limits on the rate of heat transfer to the lattice, and by observing the decay of the plasma at the back of the film, we estimate the timescale of electron-hole recombination. We interpret each of these timescales within a common framework of electron-phonon scattering and find qualitative agreement between the various relaxation times observed. We find that the carrier density is not determined by the $e-h$ plasma temperature after a few picoseconds. The diffusion and recombination become nonlinear with initial excitation $gtrsim 10^{20} text{cm}^{-3}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا