The power conversion efficiency of an ultrathin CIGS solar cell was maximized using a coupled optoelectronic model to determine the optimal bandgap grading of the nonhomogeneous CIGS layer in the thickness direction. The bandgap of the CIGS layer was either sinusoidally or linearly graded, and the solar cell was modeled to have a metallic backreflector corrugated periodically along a fixed direction in the plane. The model predicts that specially tailored bandgap grading can significantly improve the efficiency, with much smaller improvements due to the periodic corrugations. An efficiency of 27.7% with the conventional 2200-nm-thick CIGS layer is predicted with sinusoidal bandgap grading, in comparison to 22% efficiency obtained experimentally with homogeneous bandgap. Furthermore, the inclusion of sinusoidal grading increases the predicted efficiency to 22.89% with just a 600-nm-thick CIGS layer. These high efficiencies arise due to a large electron-hole-pair generation rate in the narrow-bandgap regions and the elevation of the open-circuit voltage due to a wider bandgap in the region toward the front surface of the CIGS layer. Thus, bandgap nonhomogeneity, in conjunction with periodic corrugation of the backreflector, can be effective in realizing ultrathin CIGS solar cells that can help overcome the scarcity of indium.