Do you want to publish a course? Click here

Stripe Antiferromagnetism and Disorder in the Mott Insulator NaFe$_{1-x}$Cu$_{x}$As ($x lesssim 0.5$)

90   0   0.0 ( 0 )
 Added by Yizhou Xin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron scattering measurements have demonstrated that the heavily Cu-doped NaFe$_{1-x}$Cu$_{x}$As compound behaves like a Mott insulator exhibiting both real space Fe-Cu stripes, as well as antiferromagnetism below a Neel temperature for $xlesssim 0.5$. We have investigated evolution of structural and magnetic ordering using $^{23}$Na and $^{75}$As NMR for single crystals ($x$ = 0.39 and 0.48), confirming antiferromagnetism in the form of magnetic stripes. We show that end-chain defects in these stripes are the principal source of magnetic disorder and are responsible for cluster spin-glass transitions in both compounds, in the latter case coexistent with antiferromagnetism. Aided by our numerical simulation of the $^{75}$As spectra, we show that a staggered magnetization at the Fe sites is induced by non-magnetic Cu dopants.



rate research

Read More

Recent neutron scattering measurements indicate that NaFe$_{1-x}$Cu$_{x}$As forms an antiferromagnetic stripe phase near $xapprox 0.5$ in a Mott insulating state. This copper concentration is well in excess of that required for superconductivity, $x < 0.04$. We have investigated the development of magnetism in this compound using $^{23}$Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation measurements performed on single crystals ($x$ = 0.13, 0.18, 0.24, and 0.39). We find multiple inequivalent Na sites, each of which is associated with a different number of nearest neighbor Fe sites occupied by a Cu dopant. We show that the distribution of Cu substituted for Fe is random in-plane for low concentrations ($x = 0.13$ and 0.18), but deviates from this with increasing Cu doping. As is characteristic of many pnictide compounds, there is a spin pseudo gap that increases in magnitude with dopant concentration. This is correlated with a corresponding increase in orbital NMR frequency shift indicating a change in valence from Cu$^{2+}$ to a Cu$^{1+}$ state as $x$ exceeds 0.18, concomitant with the change of Fe$^{2+}$ to Fe$^{3+}$ resulting in the formation of magnetic clusters. However, for $xleq 0.39$ there is no evidence of long-range static magnetic order.
A central question in a large class of strongly correlated electron systems, including heavy fermion compounds and iron pnictides, is the identification of different phases and their origins. It has been shown that the antiferromagnetic (AFM) phase in some heavy fermion compounds is induced by Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized moments, and that the competition between this interaction and Kondo effect is responsible for quantum criticality. However, conclusive experimental evidence of the RKKY interaction in pnictides is lacking. Here, using high resolution $^{23}$Na NMR measurements on lightly Cu-doped metallic single crystals of NaFeCuAs ~($x approx 0.01$) and numerical simulation, we show direct evidence of the RKKY interaction in this pnictide system. Aided by computer simulation, we identify the $^{23}$Na NMR satellite resonances with the RKKY oscillations of spin polarization at Fe sites. Our NMR results indicate coexistence of local and itinerant magnetism in lightly Cu-doped NaFeCuAs.
One of the major puzzles in condensed matter physics has been the observation of a Mott-insulating state away from half-filling. The filling-controlled Mott insulator-metal transition, induced via charge-carrier doping, has been extensively researched, but its governing mechanisms have yet to be fully understood. Several theoretical proposals aimed to elucidate the nature of the transition have been put forth, a notable one being phase separation and an associated percolation-induced transition. In the present work, we study the prototypical doped Mott-insulating rare-earth titanate YTiO$_3$, in which the insulating state survives up to a large hole concentration of 35%. Single crystals of Y$_{1-x}$Ca$_x$TiO$_3$ with $0 leq x leq 0.5$, spanning the insulator-metal transition, are grown and investigated. Using x-ray absorption spectroscopy, a powerful technique capable of probing element-specific electronic states, we find that the primary effect of hole doping is to induce electronic phase separation into hole-rich and hole-poor regions. The data reveal the formation of electronic states within the Mott-Hubbard gap, near the Fermi level, which increase in spectral weight with increasing doping. From a comparison with DFT+$U$ calculations, we infer that the hole-poor and hole-rich components have charge densities that correspond to the Mott-insulating $x = 0$ and metallic $x sim 0.5$ states, respectively, and that the new electronic states arise from the metallic component. Our results indicate that the hole-doping-induced insulator-metal transition in Y$_{1-x}$Ca$_x$TiO$_3$ is indeed percolative in nature, and thus of inherent first-order character.
119 - Y.J. Um , Yunkyu Bang , B.H. Min 2014
We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.
278 - A. F. Wang , J. J. Lin , P. Cheng 2013
A series of high quality NaFe$_{1-x}$Cu$_x$As single crystals has been grown by a self-flux technique, which were systematically characterized via structural, transport, thermodynamic, and high pressure measurements. Both the structural and magnetic transitions are suppressed by Cu doping, and bulk superconductivity is induced by Cu doping. Superconducting transition temperature ($T_c$) is initially enhanced from 9.6 to 11.5 K by Cu doping, and then suppressed with further doping. A phase diagram similar to NaFe$_{1-x}$Co$_x$As is obtained except that insulating instead of metallic behavior is observed in extremely overdoped samples. $T_c$s of underdoped, optimally doped, and overdoped samples are all notably enhanced by applying pressure. Although a universal maximum transition temperature ($T_c^{max}$) of about 31 K under external pressure is observed in underdoped and optimally doped NaFe$_{1-x}$Co$_x$As, $T_c^{max}$ of NaFe$_{1-x}$Cu$_x$As is monotonously suppressed by Cu doping, suggesting that impurity potential of Cu is stronger than Co in NaFeAs. The comparison between Cu and Co doping effect in NaFeAs indicates that Cu serves as an effective electron dopant with strong impurity potential, but part of the doped electrons are localized and do not fill the energy bands as predicted by the rigid-band model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا