No Arabic abstract
The next generation of Cherenkov telescope cameras feature Silicon Photo Multipliers (SiPM), which can guarantee excellent performance and allow for observation also under moonlight, increasing duty-cycle and therefore the physics reach. A 4 m-diameter Davies-Cotton prototype telescope with a 9-degree optical FoV and a 1296-pixel SiPM camera, has been designed to meet the requirements of the next generation of ground-based gamma-ray observatories at the highest energies. The large-scale production of the telescopes for array deployment has required the development of a fully automated calibration strategy which relies on a dedicated hardware, the Camera Test Setup (CTS). For each camera pixel, the CTS is equipped with two LEDs, one operated in pulsed mode to reproduce signal and one in continuous mode to reproduce night-sky background. In this contribution we will present the camera calibration strategy, from the laboratory measurement to the on-site monitoring with emphasis on the results obtained with the first camera prototype. In addition, key performances such as charge resolution, time resolution and trigger efficiencies and their degradation with increasing night-sky background level will be presented.
The SST-1M is a 4-m diameter mirror Davies-Cotton gamma-ray telescope. It has been designed to cover the energy range above 500 GeV and to be part of an array of telescopes separated by 150-200 m. Its innovative camera is featuring large area hexagonal silicon photo-multipliers as photon detectors and a fully digital trigger and readout system. Here, the strategy and the methods for its calibration are presented, together with the obtained results. In particular, the off and on-site calibration strategies are demonstrated on the first camera prototype. The performances of the camera in terms of charge and time resolution are described.
Among the main disadvantages of using silicon photomultipliers (SiPMs) in large experiments are their limited physical area (increasing the cost and the complexity of the readout of a camera) and their sensitivity to unwanted wavelengths. This explains why photomultiplier tubes (PMTs) are still selected for the largest cameras of present and future Very High Energy (VHE) gamma-ray telescopes. These telescopes require photosensors that are sensitive to the fast and dim optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. Here we introduce a low-cost pixel consisting of a SiPM attached to a PMMA disk doped with a wavelength-shifting material, which collects light over a much larger area than standard SiPMs, increases sensitivity to near-UV light and improves background rejection. We also show the measurements performed in the laboratory with a proof-of-concept textit{Light-Trap} pixel that is equipped with a 3$times$3~mm$^2$ SiPM collecting light only in the 300-400~nm band, covering an area $sim$20 times larger than that of the same SiPM itself. We also present results from simulations performed with Geant4 to evaluate its performance. In addition to VHE astronomy, this pixel could have other applications in fields where detection area and cost are critical.
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.
The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique.
Following the discovery of the cosmic rays by Victor Hess in 1912, more than 70 years and numerous technological developments were needed before an unambiguous detection of the first very-high-energy gamma-ray source in 1989 was made. Since this discovery the field on very-high-energy gamma-ray astronomy experienced a true revolution: A second, then a third generation of instruments were built, observing the atmospheric cascades from the ground, either through the atmospheric Cherenkov light they comprise, or via the direct detection of the charged particles they carry. Present arrays, 100 times more sensitive than the pioneering experiments, have detected a large number of astrophysical sources of various types, thus opening a new window on the non-thermal Universe. New, even more sensitive instruments are currently being built; these will allow us to explore further this fascinating domain. In this article we describe the detection techniques, the history of the field and the prospects for the future of ground-based very-high-energy gamma-ray astronomy.