Do you want to publish a course? Click here

Adversarial Defense by Suppressing High-frequency Components

100   0   0.0 ( 0 )
 Added by Zhendong Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent works show that deep neural networks trained on image classification dataset bias towards textures. Those models are easily fooled by applying small high-frequency perturbations to clean images. In this paper, we learn robust image classification models by removing high-frequency components. Specifically, we develop a differentiable high-frequency suppression module based on discrete Fourier transform (DFT). Combining with adversarial training, we won the 5th place in the IJCAI-2019 Alibaba Adversarial AI Challenge. Our code is available online.



rate research

Read More

263 - Mo Zhou , Le Wang , Zhenxing Niu 2021
Deep Neural Network classifiers are vulnerable to adversarial attack, where an imperceptible perturbation could result in misclassification. However, the vulnerability of DNN-based image ranking systems remains under-explored. In this paper, we propose two attacks against deep ranking systems, i.e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations. Specifically, the expected ranking order is first represented as a set of inequalities, and then a triplet-like objective function is designed to obtain the optimal perturbation. Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks, where the model learns to prevent the positive and negative samples being pulled close to each other by adversarial attack. To comprehensively measure the empirical adversarial robustness of a ranking model with our defense, we propose an empirical robustness score, which involves a set of representative attacks against ranking models. Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets. Experimental results demonstrate that a typical deep ranking system can be effectively compromised by our attacks. Nevertheless, our defense can significantly improve the ranking system robustness, and simultaneously mitigate a wide range of attacks.
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target models outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin.
152 - Ali Borji 2020
Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how shape bias can be incorporated into CNNs to improve their robustness. Two algorithms are proposed, based on the observation that edges are invariant to moderate imperceptible perturbations. In the first one, a classifier is adversarially trained on images with the edge map as an additional channel. At inference time, the edge map is recomputed and concatenated to the image. In the second algorithm, a conditional GAN is trained to translate the edge maps, from clean and/or perturbed images, into clean images. Inference is done over the generated image corresponding to the inputs edge map. Extensive experiments over 10 datasets demonstrate the effectiveness of the proposed algorithms against FGSM and $ell_infty$ PGD-40 attacks. Further, we show that a) edge information can also benefit other adversarial training methods, and b) CNNs trained on edge-augmented inputs are more robust against natural image corruptions such as motion blur, impulse noise and JPEG compression, than CNNs trained solely on RGB images. From a broader perspective, our study suggests that CNNs do not adequately account for image structures that are crucial for robustness. Code is available at:~url{https://github.com/aliborji/Shapedefence.git}.
Despite the enormous performance of deepneural networks (DNNs), recent studies have shown theirvulnerability to adversarial examples (AEs), i.e., care-fully perturbed inputs designed to fool the targetedDNN. Currently, the literature is rich with many ef-fective attacks to craft such AEs. Meanwhile, many de-fenses strategies have been developed to mitigate thisvulnerability. However, these latter showed their effec-tiveness against specific attacks and does not general-ize well to different attacks. In this paper, we proposea framework for defending DNN classifier against ad-versarial samples. The proposed method is based on atwo-stage framework involving a separate detector anda denoising block. The detector aims to detect AEs bycharacterizing them through the use of natural scenestatistic (NSS), where we demonstrate that these statis-tical features are altered by the presence of adversarialperturbations. The denoiser is based on block matching3D (BM3D) filter fed by an optimum threshold valueestimated by a convolutional neural network (CNN) toproject back the samples detected as AEs into theirdata manifold. We conducted a complete evaluation onthree standard datasets namely MNIST, CIFAR-10 andTiny-ImageNet. The experimental results show that theproposed defense method outperforms the state-of-the-art defense techniques by improving the robustnessagainst a set of attacks under black-box, gray-box and white-box settings. The source code is available at: https://github.com/kherchouche-anouar/2DAE
Deep Neural Networks (DNNs) have recently led to significant improvements in many fields. However, DNNs are vulnerable to adversarial examples which are samples with imperceptible perturbations while dramatically misleading the DNNs. Moreover, adversarial examples can be used to perform an attack on various kinds of DNN based systems, even if the adversary has no access to the underlying model. Many defense methods have been proposed, such as obfuscating gradients of the networks or detecting adversarial examples. However it is proved out that these defense methods are not effective or cannot resist secondary adversarial attacks. In this paper, we point out that steganalysis can be applied to adversarial examples detection, and propose a method to enhance steganalysis features by estimating the probability of modifications caused by adversarial attacks. Experimental results show that the proposed method can accurately detect adversarial examples. Moreover, secondary adversarial attacks cannot be directly performed to our method because our method is not based on a neural network but based on high-dimensional artificial features and FLD (Fisher Linear Discriminant) ensemble.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا