Do you want to publish a course? Click here

Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features

122   0   0.0 ( 0 )
 Added by Juhong Min
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Establishing visual correspondences under large intra-class variations requires analyzing images at different levels, from features linked to semantics and context to local patterns, while being invariant to instance-specific details. To tackle these challenges, we represent images by hyperpixels that leverage a small number of relevant features selected among early to late layers of a convolutional neural network. Taking advantage of the condensed features of hyperpixels, we develop an effective real-time matching algorithm based on Hough geometric voting. The proposed method, hyperpixel flow, sets a new state of the art on three standard benchmarks as well as a new dataset, SPair-71k, which contains a significantly larger number of image pairs than existing datasets, with more accurate and richer annotations for in-depth analysis.



rate research

Read More

We propose a novel cost aggregation network, called Cost Aggregation with Transformers (CATs), to find dense correspondences between semantically similar images with additional challenges posed by large intra-class appearance and geometric variations. Compared to previous hand-crafted or CNN-based methods addressing the cost aggregation stage, which either lack robustness to severe deformations or inherit the limitation of CNNs that fail to discriminate incorrect matches due to limited receptive fields, CATs explore global consensus among initial correlation map with the help of some architectural designs that allow us to exploit full potential of self-attention mechanism. Specifically, we include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation to benefit from hierarchical feature representations within Transformer-based aggregator, and combine with swapping self-attention and residual connections not only to enforce consistent matching, but also to ease the learning process. We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies. Code and trained models will be made available at https://github.com/SunghwanHong/CATs.
We study how stochastic differential equation (SDE) based ideas can inspire new modifications to existing algorithms for a set of problems in computer vision. Loosely speaking, our formulation is related to both explicit and implicit strategies for data augmentation and group equivariance, but is derived from new results in the SDE literature on estimating infinitesimal generators of a class of stochastic processes. If and when there is nominal agreement between the needs of an application/task and the inherent properties and behavior of the types of processes that we can efficiently handle, we obtain a very simple and efficient plug-in layer that can be incorporated within any existing network architecture, with minimal modification and only a few additional parameters. We show promising experiments on a number of vision tasks including few shot learning, point cloud transformers and deep variational segmentation obtaining efficiency or performance improvements.
Visual semantic correspondence is an important topic in computer vision and could help machine understand objects in our daily life. However, most previous methods directly train on correspondences in 2D images, which is end-to-end but loses plenty of information in 3D spaces. In this paper, we propose a new method on predicting semantic correspondences by leveraging it to 3D domain and then project corresponding 3D models back to 2D domain, with their semantic labels. Our method leverages the advantages in 3D vision and can explicitly reason about objects self-occlusion and visibility. We show that our method gives comparative and even superior results on standard semantic benchmarks. We also conduct thorough and detailed experiments to analyze our network components. The code and experiments are publicly available at https://github.com/qq456cvb/SemanticTransfer.
We propose a framework for aligning and fusing multiple images into a single coordinate-based neural representations. Our framework targets burst images that have misalignment due to camera ego motion and small changes in the scene. We describe different strategies for alignment depending on the assumption of the scene motion, namely, perspective planar (i.e., homography), optical flow with minimal scene change, and optical flow with notable occlusion and disocclusion. Our framework effectively combines the multiple inputs into a single neural implicit function without the need for selecting one of the images as a reference frame. We demonstrate how to use this multi-frame fusion framework for various layer separation tasks.
58 - Wei Shen , Fei Li , Rujie Liu 2019
Training convolutional neural networks for image classification tasks usually causes information loss. Although most of the time the information lost is redundant with respect to the target task, there are still cases where discriminative information is also discarded. For example, if the samples that belong to the same category have multiple correlated features, the model may only learn a subset of the features and ignore the rest. This may not be a problem unless the classification in the test set highly depends on the ignored features. We argue that the discard of the correlated discriminative information is partially caused by the fact that the minimization of the classification loss doesnt ensure to learn the overall discriminative information but only the most discriminative information. To address this problem, we propose an information flow maximization (IFM) loss as a regularization term to find the discriminative correlated features. With less information loss the classifier can make predictions based on more informative features. We validate our method on the shiftedMNIST dataset and show the effectiveness of IFM loss in learning representative and discriminative features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا