No Arabic abstract
We present a detailed analysis of the projected stellar rotational velocities of the well-separated double main sequence (MS) in the young, $sim200$Myr-old Milky Way open cluster NGC 2287 and suggest that stellar rotation may drive the split MSs in NGC 2287. We find that the observed distribution of projected stellar rotation velocities could result from a dichotomous distribution of stellar rotation rates. We discuss whether our observations may reflect the effects of tidal locking affecting a fraction of the clusters member stars in stellar binary systems. The slow rotators are likely stars that initially rotated rapidly but subsequently slowed down through tidal locking induced by low-mass-ratio binary systems. However, the cluster may have a much larger population of short-period binaries than is usually seen in the literature, with relatively low secondary masses.
Stars spend most of their lifetimes on the `main sequence (MS) in the Hertzsprung--Russell diagram. The obvious double MSs seen in the equivalent color--magnitude diagrams characteristic of Milky Way open clusters pose a fundamental challenge to our traditional understanding of star clusters as `single stellar populations. The clear MS bifurcation of early-type stars with masses greater than $sim1.6 M_odot$ is thought to result from a range in the stellar rotation rates. However, direct evidence connecting double MSs to stellar rotation properties has yet to emerge. Here, we show through analysis of the projected stellar rotational velocities ($vsin i$, where $i$ represents the stars inclination angle) that the well-separated double MS in the young, $sim200Myr$-old Milky Way open cluster NGC 2287 is tightly correlated with a dichotomous distribution of stellar rotation rates. We discuss whether our observations may reflect the effects of tidal locking affecting a fraction of the clusters member stars in stellar binary systems. We show that the slow rotators could potentially be initially rapidly rotating stars that have been slowed down by tidal locking by a low mass-ratio companion in a cluster containing a large fraction of short-period, low-mass-ratio binaries. This demonstrates that stellar rotation drives the split MSs in young, $lessapprox 300$Myr-old star clusters. However, special conditions, e.g., as regards the mass-ratio distribution, might be required for this scenario to hold.
We present an analysis of the relatively low mass ($sim2400$~M$_{odot}$), $sim800$~Myr, Galactic open cluster, NGC~2818, using Gaia DR2 results combined with VLT/FLAMES spectroscopy. Using Gaia DR2 proper motions and parallax measurements we are able to select a clean sample of cluster members. This cluster displays a clear extended main sequence turn-off (eMSTO), a phenomenon previously studied mainly in young and intermediate age massive clusters in the Magellanic clouds. The main sequence of NGC~2818 is extremely narrow, with a width of $sim0.01$ magnitudes (G$_{rm BP} - $ G$_{rm RP}$), suggesting very low levels of differential extinction. Using VLT/FLAMES spectroscopy of 60 cluster members to measure the rotational velocity of the stars (Vsini) we find that stars on the red side of the eMSTO have high Vsini ($>160$~km/s) while stars on the blue side have low Vsini ($<160$~km/s), in agreement with model predictions. The cluster also follows the previously discovered trend between the age of the cluster and the extent of the eMSTO. We conclude that stellar rotation is the likely cause of the eMSTO phenomenon.
Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ages and K-M-type stars. We study the nearby, 3 Gyr-old open cluster Ruprecht 147 to compare it with the previously-studied, but far more distant, NGC 6819 cluster, and especially to measure cooler stars than was previously possible there. We constructed an inclusive list of 102 cluster members from prior work, including Gaia DR2, and for which light curves were also obtained during Campaign 7 of the Kepler/K2 space mission. [...] Periodic signals are found for 32 stars, 21 of which are considered to be both highly reliable and to represent single, or effectively single, Ru147 stars. These stars cover the spectral types from late-F to mid-M stars, and they have periods ranging from 6d-32d, allowing for a comparison of Ruprecht 147 to both of the other open clusters and to models of rotational spindown. The derived rotation periods connect reasonably to, overlap with, and extend to lower masses the known rotation period distribution of the 2.5 Gyr-old cluster NGC 6819. The data confirm that cool stars lie on a single surface in rotation period-mass-age space, and they simultaneously challenge its commonly assumed shape. The shape at the low mass region of the color-period diagram at the age of Ru147 favors a recently-proposed model, which requires a third mass-dependent timescale in addition to the two timescales required by a former model, suggesting that a third physical process is required to model rotating stars effectively.
We present and analyse 120 spectroscopic binary and triple cluster members of the old (4 Gyr) open cluster M67 (NGC 2682). As a cornerstone of stellar astrophysics, M67 is a key cluster in the WIYN Open Cluster Study (WOCS); radial-velocity (RV) observations of M67 are ongoing and extend back over 45 years, incorporating data from seven different telescopes, and allowing us to detect binaries with orbital periods <~10^4 days. Our sample contains 1296 stars (604 cluster members) with magnitudes of 10 <= V <= 16.5 (about 1.3 to 0.7 Msolar), from the giants down to ~4 mag below the main-sequence turnoff, and extends in radius to 30 arcminutes (7.4 pc at a distance of 850 pc, or ~7 core radii). This paper focuses primarily on the main-sequence binaries, but orbital solutions are also presented for red giants, yellow giants and sub-subgiants. Out to our period detection limit and within our magnitude and spatial domain, we find a global main-sequence incompleteness-corrected binary fraction of 34% +/- 3%, which rises to 70% +/- 17% in the cluster center. We derive a tidal circularization period of P_circ = 11.0 +1.1 -1.0 days. We also analyze the incompleteness-corrected distributions of binary orbital elements and masses. The period distribution rises toward longer periods. The eccentricity distribution, beyond P_circ, is consistent with a uniform distribution. The mass-ratio distribution is also consistent with a uniform distribution. Overall, these M67 binaries are closely consistent with similar binaries in the galactic field, as well as the old (7 Gyr) open cluster NGC 188. WIYN Open Cluster Study. 83.
Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the clusters age in a distance independent way, i.e., the so-called gyrochronology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the clusters mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).