Do you want to publish a course? Click here

Drug Release Management for Dynamic TDMA-Based Molecular Communication

70   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we design a drug release mechanism for dynamic time division multiple access (TDMA)-based molecular communication via diffusion (MCvD). In the proposed scheme, the communication frame is divided into several time slots over each of which a transmitter nanomachine is scheduled to convey its information by releasing the molecules into the medium. To optimize the number of released molecules and the time duration of each time slot (symbol duration), we formulate a multi-objective optimization problem whose objective functions are the bit error rate (BER) of each transmitter nanomachine. Based on the number of released molecules and symbol durations, we consider four cases, namely: static-time static-number of molecules (STSN), static-time dynamic-number of molecules (STDN), dynamic-time static-number of molecules (DTSN), and dynamic-time dynamic-number of molecules (DTDN). We consider three types of medium in which the molecules are propagated, namely: mild diffusive environment (MDE), moderate diffusive environment (MODE), and severe diffusive environment (SDE). For the channel model, we consider a 3-dimensional (3D) diffusive environment, such as blood, with drift in three directions. Simulation results show that the STSN approach is the least complex one with BER around $text{10}^{text{-2}}$, but, the DTDN is the most complex scenario with the BER around $text{10}^{text{-8}}$.



rate research

Read More

The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mechanism aiming to improve the data rate between a base station (BS) and a user equipment through deploying multiple relaying UAVs. We consider the effect of interference, which is incurred by the nodes of another established communication network. Our primary goal is to design the 3D trajectories and power allocation for the UAVs to maximize the data flow while the interference constraint is met. The UAVs can reconfigure their locations to evade the unintended/intended interference caused by reckless/smart interferers. We also consider the scenario in which smart jammers chase the UAVs to degrade the communication quality. In this case, we investigate the problem from the perspective of both UAV network and smart jammers. An alternating-maximization approach is proposed to address the joint 3D trajectory design and power allocation problem. We handle the 3D trajectory design by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Finally, we demonstrate the efficacy of our proposed method through simulations.
This contribution exploits the duality between a viral infection process and macroscopic air-based molecular communication. Airborne aerosol and droplet transmission through human respiratory processes is modeled as an instance of a multiuser molecular communication scenario employing respiratory-event-driven molecular variable-concentration shift keying. Modeling is aided by experiments that are motivated by a macroscopic air-based molecular communication testbed. In artificially induced coughs, a saturated aqueous solution containing a fluorescent dye mixed with saliva is released by an adult test person. The emitted particles are made visible by means of optical detection exploiting the fluorescent dye. The number of particles recorded is significantly higher in test series without mouth and nose protection than in those with a wellfitting medical mask. A simulation tool for macroscopic molecular communication processes is extended and used for estimating the transmission of infectious aerosols in different environments. Towards this goal, parameters obtained through self experiments are taken. The work is inspired by the recent outbreak of the coronavirus pandemic.
Positioning with one single communication between base stations and user devices can effectively save air time and thus expand the user volume to infinite. However, this usually demands accurate synchronization between base stations. Wireless synchronization between base stations can simplify the deployment of the positioning system but requires accurate clock offset estimation between base stations. A time division multiple access (TDMA) localization system in which user devices only receive signals from base stations to generate time of arrival (TOA) measurements to position themselves and no cables are needed to interconnect base stations for clock synchronization is proposed, implemented and tested. In this system, the user devices can easily join in or exit without influence to other users and the update rate of each user can be easily adjusted independently according to its specific requirement.
Joint radar and communication (JRC) has recently attracted substantial attention. The first reason is that JRC allows individual radar and communication systems to share spectrum bands and thus improves the spectrum utilization. The second reason is that JRC enables a single hardware platform, e.g., an autonomous vehicle or a UAV, to simultaneously perform the communication function and the radar function. As a result, JRC is able to improve the efficiency of resources, i.e., spectrum and energy, reduce the system size, and minimize the system cost. However, there are several challenges to be solved for the JRC design. In particular, sharing the spectrum imposes the interference caused by the systems, and sharing the hardware platform and energy resource complicates the design of the JRC transmitter and compromises the performance of each function. To address the challenges, several resource management approaches have been recently proposed, and this paper presents a comprehensive literature review on resource management for JRC. First, we give fundamental concepts of JRC, important performance metrics used in JRC systems, and applications of the JRC systems. Then, we review and analyze resource management approaches, i.e., spectrum sharing, power allocation, and interference management, for JRC. In addition, we present security issues to JRC and provide a discussion of countermeasures to the security issues. Finally, we highlight important challenges in the JRC design and discuss future research directions related to JRC.
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is affected by both self-blockage and dynamic human blockers. We first build up a three-dimensional propagation channel in this system to characterize the impact of molecular absorption loss and the shrinking usable bandwidth nature of the ultra-wideband THz channel. We then carry out new performance analysis for two MC strategies: 1) Closest line-of-sight (LOS) access point (AP) MC (C-MC), and 2) Reactive MC (R- MC). With numerical results, we validate our analysis and show the considerable improvement achieved by both MC strategies in the connection probability. We further show that the C-MC and R-MC strategies provide significant and marginal capacity gain relative to the single connectivity strategy, respectively, and increasing the number of the users associated APs imposes completely different affects on the capacity gain achieved by the C-MC and R-MC strategies. Additionally, we clarify that our analysis allows us to determine the optimal density of APs in order to maximize the capacity gain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا