On $(t,r)$ broadcast domination of certain grid graphs


Abstract in English

Let $G=( V(G), E(G) )$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. We say a subset $D$ of $V(G)$ dominates $G$ if every vertex in $V setminus D$ is adjacent to a vertex in $D$. A generalization of this concept is $(t,r)$ broadcast domination. We designate certain vertices to be towers of signal strength $t$, which send out signal to neighboring vertices with signal strength decaying linearly as the signal traverses the edges of the graph. We let $mathbb{T}$ be the set of all towers, and we define the signal received by a vertex $vin V(G)$ from a tower $w in mathbb T$ to be $f(v)=sum_{win mathbb{T}}max(0,t-d(v,w))$. Blessing, Insko, Johnson, Mauretour (2014) defined a $(t,r)$ broadcast dominating set, or a $(t,r) $ broadcast, on $G$ as a set $mathbb{T} subseteq V(G) $ such that $f(v)geq r$ for all $vin V(G)$. The minimal cardinality of a $(t, r)$ broadcast on $G$ is called the $(t, r)$ broadcast domination number of $G$. In this paper, we present our research on the $(t,r)$ broadcast domination number for certain graphs including paths, grid graphs, the slant lattice, and the kings lattice.

Download