Do you want to publish a course? Click here

CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text

340   0   0.0 ( 0 )
 Added by Koustuv Sinha
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a models ability for systematic generalization by evaluating on held-out combinations of logical rules, and it allows us to evaluate a models robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs---with the graph-based model exhibiting both stronger generalization and greater robustness.



rate research

Read More

While designing inductive bias in neural architectures has been widely studied, we hypothesize that transformer networks are flexible enough to learn inductive bias from suitable generic tasks. Here, we replace architecture engineering by encoding inductive bias in the form of datasets. Inspired by Peirces view that deduction, induction, and abduction form an irreducible set of reasoning primitives, we design three synthetic tasks that are intended to require the model to have these three abilities. We specifically design these synthetic tasks in a way that they are devoid of mathematical knowledge to ensure that only the fundamental reasoning biases can be learned from these tasks. This defines a new pre-training methodology called LIME (Learning Inductive bias for Mathematical rEasoning). Models trained with LIME significantly outperform vanilla transformers on three very different large mathematical reasoning benchmarks. Unlike dominating the computation cost as traditional pre-training approaches, LIME requires only a small fraction of the computation cost of the typical downstream task.
Visual events are a composition of temporal actions involving actors spatially interacting with objects. When developing computer vision models that can reason about compositional spatio-temporal events, we need benchmarks that can analyze progress and uncover shortcomings. Existing video question answering benchmarks are useful, but they often conflate multiple sources of error into one accuracy metric and have strong biases that models can exploit, making it difficult to pinpoint model weaknesses. We present Action Genome Question Answering (AGQA), a new benchmark for compositional spatio-temporal reasoning. AGQA contains $192M$ unbalanced question answer pairs for $9.6K$ videos. We also provide a balanced subset of $3.9M$ question answer pairs, $3$ orders of magnitude larger than existing benchmarks, that minimizes bias by balancing the answer distributions and types of question structures. Although human evaluators marked $86.02%$ of our question-answer pairs as correct, the best model achieves only $47.74%$ accuracy. In addition, AGQA introduces multiple training/test splits to test for various reasoning abilities, including generalization to novel compositions, to indirect references, and to more compositional steps. Using AGQA, we evaluate modern visual reasoning systems, demonstrating that the best models barely perform better than non-visual baselines exploiting linguistic biases and that none of the existing models generalize to novel compositions unseen during training.
A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations. Building such dialogue systems is a challenging problem, involving various reasoning types on both visual and language inputs. Existing benchmarks do not have enough annotations to thoroughly analyze dialogue systems and understand their capabilities and limitations in isolation. These benchmarks are also not explicitly designed to minimise biases that models can exploit without actual reasoning. To address these limitations, in this paper, we present DVD, a Diagnostic Dataset for Video-grounded Dialogues. The dataset is designed to contain minimal biases and has detailed annotations for the different types of reasoning over the spatio-temporal space of video. Dialogues are synthesized over multiple question turns, each of which is injected with a set of cross-turn semantic relationships. We use DVD to analyze existing approaches, providing interesting insights into their abilities and limitations. In total, DVD is built from $11k$ CATER synthetic videos and contains $10$ instances of $10$-round dialogues for each video, resulting in more than $100k$ dialogues and $1M$ question-answer pairs. Our code and dataset are publicly available at https://github.com/facebookresearch/DVDialogues.
Diagnostic reasoning is a key component of many professions. To improve students diagnostic reasoning skills, educational psychologists analyse and give feedback on epistemic activities used by these students while diagnosing, in particular, hypothesis generation, evidence generation, evidence evaluation, and drawing conclusions. However, this manual analysis is highly time-consuming. We aim to enable the large-scale adoption of diagnostic reasoning analysis and feedback by automating the epistemic activity identification. We create the first corpus for this task, comprising diagnostic reasoning self-explanations of students from two domains annotated with epistemic activities. Based on insights from the corpus creation and the tasks characteristics, we discuss three challenges for the automatic identification of epistemic activities using AI methods: the correct identification of epistemic activity spans, the reliable distinction of similar epistemic activities, and the detection of overlapping epistemic activities. We propose a separate performance metric for each challenge and thus provide an evaluation framework for future research. Indeed, our evaluation of various state-of-the-art recurrent neural network architectures reveals that current techniques fail to address some of these challenges.
564 - Luoqiu Li , Zhen Bi , Hongbin Ye 2021
Recent years have witnessed the prosperity of legal artificial intelligence with the development of technologies. In this paper, we propose a novel legal application of legal provision prediction (LPP), which aims to predict the related legal provisions of affairs. We formulate this task as a challenging knowledge graph completion problem, which requires not only text understanding but also graph reasoning. To this end, we propose a novel text-guided graph reasoning approach. We collect amounts of real-world legal provision data from the Guangdong government service website and construct a legal dataset called LegalLPP. Extensive experimental results on the dataset show that our approach achieves better performance compared with baselines. The code and dataset are available in url{https://github.com/zxlzr/LegalPP} for reproducibility.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا