Do you want to publish a course? Click here

The Cherenkov Telescope Array view of the Galactic Center region

69   0   0.0 ( 0 )
 Added by Aion Viana
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Among all the high-energy environments of our Galaxy, the Galactic Center (GC) region is definitely the richest. It harbors a large amount of non-thermal emitters, including the closest supermassive black hole, dense molecular clouds, regions with strong star forming activity, multiple supernova remnants and pulsar wind nebulae, arc-like radio structures, as well as the base of what may be large-scale Galactic outflows, possibly related to the Fermi Bubbles. It also contains a strong diffuse TeV gamma-ray emission along the Galactic ridge, with a disputed origin, including the presence of a possible Pevatron, unresolved sources, and an increased relevance of the diffuse sea of cosmic rays. This very rich region will be one of the key targets for the next generation ground-based observatory for gamma-ray astronomy, the Cherenkov Telescope Array (CTA). Here we review the CTA science case for the study of the GC region, and present the planned survey strategy. These observations are simulated and we assess CTAs potential to better characterize the origin and nature of a selection of gamma-ray sources in the region.



rate research

Read More

The Cherenkov Telescope Array is a next generation ground-based gamma-ray observatory de- signed to detect photons in the 20 GeV to 300 TeV energy range. With a sensitivity improvement of up to one order of magnitude on the entire energy range with respect to currently operating facilities, coupled with significantly better angular resolution, the array will be used to address many open questions in high-energy astrophysics. In addition, CTA will explore the ultra-high energy (E >50 TeV) window with great sensitivity for the first time. CTA is expected to reveal a detailed picture of the Galactic plane at the highest energies, and to discover around one hundred new supernova remnants and many hundreds of pulsar wind nebulae, according to current population estimates. The ability of the observatory to resolve such a large number of Galactic sources is one of the challenges to be faced. In this paper, we will present the first simulated scan of the Galactic plane with a realistic observation strategy, with particular attention to the potential source confusion. We will also present prospects for morphological studies of extended sources, such as the young SNR RX J1713.7-39.
The leading explanation of the $textit{Fermi}$ Galactic center $gamma$-ray excess is the extended emission from a unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Such a population would, along with the prompt $gamma$ rays, also inject large quantities of electrons/positrons ($e^pm$) into the interstellar medium. These $e^pm$ could potentially inverse-Compton (IC) scatter ambient photons into $gamma$ rays that fall within the sensitivity range of the upcoming Cherenkov Telescope Array (CTA). In this article, we examine the detection potential of CTA to this signature by making a realistic estimation of the systematic uncertainties on the Galactic diffuse emission model at TeV-scale $gamma$-ray energies. We forecast that, in the event that $e^pm$ injection spectra are harder than $E^{-2}$, CTA has the potential to robustly discover the IC signature of a putative Galactic bulge MSP population sufficient to explain the GCE for $e^pm$ injection efficiencies in the range $approx 2.9-74.1%$, or higher, depending on the level of mismodeling of the Galactic diffuse emission components. On the other hand, for spectra softer than $E^{-2.5}$, a reliable CTA detection would require an unphysically large $e^pm$ injection efficiency of $gtrsim 158%$. However, even this pessimistic conclusion may be avoided in the plausible event that MSP observational and/or modeling uncertainties can be reduced. We further find that, in the event that an IC signal were detected, CTA can successfully discriminate between an MSP and a dark matter origin for the radiating $e^pm$.
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E$>$100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.
Surveys open up unbiased discovery space and generate legacy datasets of long-lasting value. One of the goals of imaging arrays of Cherenkov telescopes like CTA is to survey areas of the sky for faint very high energy gamma-ray (VHE) sources, especially sources that would not have drawn attention were it not for their VHE emission (e.g. the Galactic dark accelerators). More than half the currently known VHE sources are to be found in the Galactic plane. Using standard techniques, CTA can carry out a survey of the region |l|<60 degrees, |b|<2 degrees in 250 hr (1/4th the available time per year at one location) down to a uniform sensitivity of 3 mCrab (a Galactic Plane survey). CTA could also survey 1/4th of the sky down to a sensitivity of 20 mCrab in 370 hr of observing time (an all-sky survey), which complements well the surveys by the Fermi/LAT at lower energies and extended air shower arrays at higher energies. Observations in (non-standard) divergent pointing mode may shorten the all-sky survey time to about 100 hr with no loss in survey sensitivity. We present the scientific rationale for these surveys, their place in the multi-wavelength context, their possible impact and their feasibility. We find that the Galactic Plane survey has the potential to detect hundreds of sources. Implementing such a survey should be a major goal of CTA. Additionally, about a dozen blazars, or counterparts to Fermi/LAT sources, are expected to be detected by the all-sky survey, whose prime motivation is the search for extragalactic dark accelerators.
282 - T. Hassan , S. Bonnefoy , M. Lopez 2012
In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITAS, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with Crab-like power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا