No Arabic abstract
Writing the metric of an asymptotically flat spacetime in Bondi coordinates provides an elegant way of formulating the Einstein equation as a characteristic value problem. In this setting, we find that a specific class of asymptotically flat spacetimes, including stationary solutions, contains a Maxwell gauge field as free data. Choosing this gauge field to correspond to the Dirac monopole, we derive the Taub-NUT solution in Bondi coordinates.
We show that the first law for the rotating Taub-NUT is straightforwardly established with the surface charge method. The entropy is explicitly found as a charge, and its value is not proportional to the horizon area. We conclude that there are unavoidable contributions from the Misner strings to the charges, still, the mass and angular momentum gets standard values. However, there are no independent charges associated with the Misner strings.
Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally flat and breakdown of the area theorem of the horizon for the black holes, we show that the corrections to Hawking temperature by the generaliz
We present a menagerie of solutions to the vacuum Einstein equations in six, eight and ten dimensions. These solutions describe spacetimes which are either locally asymptotically adS or locally asymptotically flat, and which have non-trivial topology. We discuss the global structure of these solutions, and their relevance within the context of M-theory.
We study the vacuum polarisation effects of the Dirac fermionic field induced by a pointlike global monopole located in the cosmological de Sitter spacetime. First we derive the four orthonormal Dirac modes in this background. Using these modes, we then compute the fermionic condensate, $langle 0| overline{Psi} Psi | 0rangle$, as well as the vacuum expectation value of the energy-momentum tensor for a massive Dirac field. We have used the Abel-Plana summation formula in order to extract the pure global monopole contribution to these quantities and have investigated their variations numerically with respect to suitable parameters. Also in particular, by taking the massless limit for the components of the energy-momentum tensor we show that the global monopole cannot induce any contribution to the trace anomaly.
We present a model for the Dirac magnetic monopole, suitable for the strong coupling regime. The magnetic monopole is static, has charge g and mass M, occupying a volume of radius R ~ O (g^2/M). It is shown that inside each n-monopole there exist infinite multipoles. It is given an analytical proof of the existence of monopole-antimonopole bound state. Theses bound-states might give additional strong light to light scattering in the proton-antiproton collision process at FermiLab TEVATRON.