We present Task Bench, a parameterized benchmark designed to explore the performance of parallel and distributed programming systems under a variety of application scenarios. Task Bench lowers the barrier to benchmarking multiple programming systems by making the implementation for a given system orthogonal to the benchmarks themselves: every benchmark constructed with Task Bench runs on every Task Bench implementation. Furthermore, Task Benchs parameterization enables a wide variety of benchmark scenarios that distill the key characteristics of larger applications. We conduct a comprehensive study with implementations of Task Bench in 15 programming systems on up to 256 Haswell nodes of the Cori supercomputer. We introduce a novel metric, minimum effective task granularity to study the baseline runtime overhead of each system. We show that when running at scale, 100 {mu}s is the smallest granularity that even the most efficient systems can reliably support with current technologies. We also study each systems scalability, ability to hide communication and mitigate load imbalance.