No Arabic abstract
GPT-2 and BERT demonstrate the effectiveness of using pre-trained language models (LMs) on various natural language processing tasks. However, LM fine-tuning often suffers from catastrophic forgetting when applied to resource-rich tasks. In this work, we introduce a concerted training framework (method) that is the key to integrate the pre-trained LMs to neural machine translation (NMT). Our proposed Cnmt consists of three techniques: a) asymptotic distillation to ensure that the NMT model can retain the previous pre-trained knowledge; b) a dynamic switching gate to avoid catastrophic forgetting of pre-trained knowledge; and c) a strategy to adjust the learning paces according to a scheduled policy. Our experiments in machine translation show method gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1.4 BLEU score. While for the large WMT14 English-French task with 40 millions of sentence-pairs, our base model still significantly improves upon the state-of-the-art Transformer big model by more than 1 BLEU score.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English-German and English-Chinese) verify the effectiveness and superiority of the proposed approach.
Exploiting large pretrained models for various NMT tasks have gained a lot of visibility recently. In this work we study how BERT pretrained models could be exploited for supervised Neural Machine Translation. We compare various ways to integrate pretrained BERT model with NMT model and study the impact of the monolingual data used for BERT training on the final translation quality. We use WMT-14 English-German, IWSLT15 English-German and IWSLT14 English-Russian datasets for these experiments. In addition to standard task test set evaluation, we perform evaluation on out-of-domain test sets and noise injected test sets, in order to assess how BERT pretrained representations affect model robustness.
The recently proposed BERT has shown great power on a variety of natural language understanding tasks, such as text classification, reading comprehension, etc. However, how to effectively apply BERT to neural machine translation (NMT) lacks enough exploration. While BERT is more commonly used as fine-tuning instead of contextual embedding for downstream language understanding tasks, in NMT, our preliminary exploration of using BERT as contextual embedding is better than using for fine-tuning. This motivates us to think how to better leverage BERT for NMT along this direction. We propose a new algorithm named BERT-fused model, in which we first use BERT to extract representations for an input sequence, and then the representations are fused with each layer of the encoder and decoder of the NMT model through attention mechanisms. We conduct experiments on supervised (including sentence-level and document-level translations), semi-supervised and unsupervised machine translation, and achieve state-of-the-art results on seven benchmark datasets. Our code is available at url{https://github.com/bert-nmt/bert-nmt}.
Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output behavior of NMT models. Specifically, we measure the word importance by attributing the NMT output to every input word through a gradient-based method. We validate the approach on a couple of perturbation operations, language pairs, and model architectures, demonstrating its superiority on identifying input words with higher influence on translation performance. Encouragingly, the calculated importance can serve as indicators of input words that are under-translated by NMT models. Furthermore, our analysis reveals that words of certain syntactic categories have higher importance while the categories vary across language pairs, which can inspire better design principles of NMT architectures for multi-lingual translation.
Small perturbations in the input can severely distort intermediate representations and thus impact translation quality of neural machine translation (NMT) models. In this paper, we propose to improve the robustness of NMT models with adversarial stability training. The basic idea is to make both the encoder and decoder in NMT models robust against input perturbations by enabling them to behave similarly for the original input and its perturbed counterpart. Experimental results on Chinese-English, English-German and English-French translation tasks show that our approaches can not only achieve significant improvements over strong NMT systems but also improve the robustness of NMT models.