Quasi-local energy and ADM mass in pure Lovelock gravity


Abstract in English

We study how the standard definitions of ADM mass and Brown-York quasi-local energy generalize to pure Lovelock gravity. The quasi-local energy is renormalized using the background subtraction prescription and we consider its limit for large surfaces. We find that the large surface limit vanishes for asymptotically flat fall-off conditions except in Einstein gravity. This problem is avoided by focusing on the variation of the quasi-local energy which correctly approaches the variation of the ADM mass for large surfaces. As a result, we obtain a new simple formula for the ADM mass in pure Lovelock gravity. We apply the formula to spherically symmetric geometries verifying previous calculations in the literature. We also revisit asymptotically AdS geometries.

Download