Do you want to publish a course? Click here

Relativistic polytrope from the collimation and acceleration profiles of the M87 jet at subparsec scales and thermodynamic evidence for the Blandford-Znajek mechanism

65   0   0.0 ( 0 )
 Added by Denis Sob'yanin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent Very Long Baseline Interferometry observations of the relativistic jet in the M87 radio galaxy at 43 GHz show gradual relativistic acceleration of the plasma and suggest a linear dependence of Lorentz factor on jet radius at scales up to 8 marcsec (0.65 pc) from the core (2.5 marcsec in projection). General analysis of integrals of motion being unaltered along the jet and reflecting fundamental conservation laws shows that the above dependence implies a polytropic equation of state with index 4/3. The inferred value of the polytropic index appears independent of the exact nature of forces sustaining the transverse balance of the jet and indicates exact conservation of the longitudinal electric current and hence the existence of a stable internal electromagnetic structure at the scales under consideration. At this index the flow is hot and corresponds to relativistic thermodynamic motion of particles. Considerable weakening of the acceleration efficiency after 8 marcsec with the jet form being unchanged can be related to the plasma cooling, when the polytropic index becomes 5/3. Such a sharp change in the index without intermediate delay at 1.44 during cooling favours the existence of an electron-positron plasma and requires at least partial participation of the Blandford-Znajek mechanism in the launching of the M87 jet.



rate research

Read More

We study the kinematics of the M87 jet using the first year data of the KVN and VERA Array (KaVA) large program, which has densely monitored the jet at 22 and 43 GHz since 2016. We find that the apparent jet speeds generally increase from $approx0.3c$ at $approx0.5$ mas from the jet base to $approx2.7c$ at $approx20$ mas, indicating that the jet is accelerated from subluminal to superluminal speeds on these scales. We perform a complementary jet kinematic analysis by using archival Very Long Baseline Array monitoring data observed in $2005-2009$ at 1.7 GHz and find that the jet is moving at relativistic speeds up to $approx5.8c$ at distances of $200-410$ mas. We combine the two kinematic results and find that the jet is gradually accelerated over a broad distance range that coincides with the jet collimation zone, implying that conversion of Poynting flux to kinetic energy flux takes place. If the jet emission consists of a single streamline, the observed trend of jet acceleration ($Gammapropto z^{0.16pm0.01}$) is relatively slow compared to models of a highly magnetized jet. This indicates that Poynting flux conversion through the differential collimation of poloidal magnetic fields may be less efficient than expected. However, we find a non-negligible dispersion in the observed speeds for a given jet distance, making it difficult to describe the jet velocity field with a single power-law acceleration function. We discuss the possibility that the jet emission consists of multiple streamlines following different acceleration profiles, resulting in jet velocity stratification.
The velocity field of the M87 jet from milli-arcsecond (mas) to arcsecond scales is extensively investigated together with new radio images taken by EVN observations. We detected proper motions of components located at between 160 mas from the core and the HST-1 complex for the first time. Newly derived velocity fields exhibits a systematic increase from sub-to-superluminal speed in the upstream of HST-1. If we assume that the observed velocities reflect the bulk flow, we here suggest that the M87 jet may be gradually accelerated through a distance of 10^6 times of the Schwarzschild radius of the supermassive black hole. The acceleration zone is co-spatial with the jet parabolic region, which is interpreted as the collimation zone of the jet (Asada & Nakamura 2012). The acceleration and collimation take place simultaneously, which we suggest a characteristic of magnetohydrodynamic flows. Distribution of the velocity field has a peak at HST-1, which is considered as the site of over-collimation, and shows a deceleration downstream of HST-1 where the jet is conical. Our interpretation of the velocity map in the M87 jet gives a hypothesis in AGNs that the acceleration and collimation zone of relativistic jets extends over the whole scale within the sphere of influence of the supermassive black hole.
We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE VLBA program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes are distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, $lesssim 10-20$ parsecs projected, and decrease their speed at longer distances. The range of apparent speeds at fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to de-projected distances of order $10^2$ parsecs, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of order $dot{Gamma}/Gamma simeq 10^{-3}$ to $10^{-2}$ per year which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of $lesssim 10$ parsecs in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.
High-resolution Very-Long-Baseline Interferometry observations of relativistic jets are essential to constrain fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, being the only Fanaroff-Riley Class II radio galaxy for which a detailed sub-parsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions which appear self-absorbed at longer wavelengths and enables an extremely sharp view towards the nucleus to be obtained. We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 $mu$as. This resolution corresponds to a linear scale of only ${sim}$400 Schwarzschild radii (for $M_{mathrm{BH}}=2.5 times 10^9 M_{odot}$). We studied the kinematic properties of the main emission features of the two-sided flow and probed its transverse structure through a pixel-based analysis. We suggest that a fast and a slow layer, with different acceleration gradients, exist in the flow. The extension of the acceleration region is large (${sim} 10^4 R_{mathrm{S}}$), indicating that the jet is magnetically-driven. The limb brightening of both jet and counter-jet and their large opening angles ($phi_mathrm{J}{sim} 10^{circ}$) strongly favor a spine-sheath structure. In the acceleration zone, the flow has a parabolic shape ($rpropto z^{0.55pm 0.07}$). The acceleration gradients and the collimation profile are consistent with the expectations for a jet in equilibrium (Lyubarsky 2009), achieved in the presence of a mild gradient of the external pressure ($ppropto z^{-k}, kleq2$).}
We study the collimation and acceleration of the jets in the nearby giant radio galaxy NGC 315, using multifrequency Very Long Baseline Array observations and archival High Sensitivity Array and Very Large Array data. We find that the jet geometry transitions from a semi-parabolic shape into a conical/hyperbolic shape at a distance of $approx10^5$ gravitational radii. We constrain the frequency-dependent position of the core, from which we locate the jet base. The jet collimation profile in the parabolic region is in good agreement with the steady axisymmetric force-free electrodynamic solution for the outermost poloidal magnetic field line anchored to the black hole event horizon on the equatorial plane, similar to the nearby radio galaxies M87 and NGC 6251. The velocity field derived from the asymmetry in brightness between the jet and counterjet shows gradual acceleration up to the bulk Lorentz factor of $Gamma sim 3$ in the region where the jet collimation occurs, confirming the presence of the jet acceleration and collimation zone. These results suggest that the jets are collimated by the pressure of the surrounding medium and accelerated by converting Poynting flux to kinetic energy flux. We discover limb-brightening of the jet in a limited distance range where the angular resolution of our data is sufficient to resolve the jet transverse structure. This indicates that either the jet has a stratified velocity field of fast-inner and slow-outer layers or the particle acceleration process is more efficient in the outer layer due to the interaction with the surroundings on pc-scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا